Олимпиадные задачи по математике для 9 класса - сложность 3 с решениями

В окружность Ω вписан остроугольный треугольник <i>ABC</i>, в котором  <i>AB > BC</i>.  Пусть <i>P</i> и <i>Q</i> – середины меньшей и большей дуг <i>AC</i> окружности Ω, соответственно, а <i>M</i> – основание перпендикуляра, опущенного из точки <i>Q</i> на отрезок <i>AB</i>. Докажите, что описанная окружность треугольника <i>BMC</i> делит пополам отрезок <i>BP</i>.

Дан треугольник <i>ABC</i>. Касательная в точке <i>C</i> к его описанной окружности пересекает прямую <i>AB</i> в точке <i>D</i>. Касательные к описанной окружности треугольника <i>ACD</i> в точках <i>A</i> и <i>C</i> пересекаются в точке <i>K</i>. Докажите, что прямая <i>DK</i> делит отрезок <i>BC</i> пополам.

Дан параллелограмм <i>ABCD</i> с тупым углом <i>A</i>. Точка <i>H</i> – основание перпендикуляра, опущенного из точки <i>A</i> на <i>BC</i>. Продолжение медианы <i>CM</i> треугольника <i>ABC</i> пересекает описанную около него окружность в точке <i>K</i>. Докажите, что точки <i>K</i>, <i>H</i>, <i>C</i> и <i>D</i> лежат на одной окружности.

В остроугольном треугольнике <i>ABC</i> на высоте <i>BH</i> выбрана произвольная точка <i>P</i>. Точки <i>A'</i> и <i>C'</i> – середины сторон <i>BC</i> и <i>AB</i> соответственно. Перпендикуляр, опущенный из <i>A'</i> на <i>CP</i>, пересекается с перпендикуляром, опущенным из <i>C'</i> на <i>AP</i>, в точке <i>K</i>. Докажите, что точка <i>K</i> равноудалена от точек <i>A</i> и <i>C</i>.

В остроугольном треугольнике $ABC$ отмечены точки $I$ и $O$ — центры вписанной и описанной окружностей соответственно. Прямые $AI$ и $CI$ вторично пересекают описанную окружность треугольника $ABC$ в точках $N$ и $M$. Отрезки $MN$ и $BO$ пересекаются в точке $X$. Докажите, что прямые $XI$ и $AC$ перпендикулярны.<img height="250" src="/storage/problem-media/67486/problem_67486_img_2.png">

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?

Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.

Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.

Пусть <i>AL</i> и <i>AK</i> – внутренняя и внешняя биссектрисы треугольника <i>ABC,  P</i> – точка пересечения касательных к описанной окружности в точках <i>B</i> и <i>C</i>. Перпендикуляр, восставленный из точки <i>L</i> к <i>BC</i>, пересекает прямую <i>AP</i> в точке <i>Q</i>. Докажите, что <i>Q</i> лежит на средней линии треугольника <i>LKP</i>.

На основании <i>AC</i> равнобедренного треугольника <i>ABC</i> взяли произвольную точку <i>X</i>, а на боковых сторонах – точки <i>P</i> и <i>Q</i> так, что <i>XPBQ</i> – параллелограмм. Докажите, что точка <i>Y</i>, симметричная точке <i>X</i> относительно <i>PQ</i>, лежит на описанной окружности треугольника <i>ABC</i>.

Дан треугольник <i>ABC</i>. Проведены высота <i>AH</i> и медиана <i>CM</i>. Обозначим точку их пересечения через <i>P</i>. Высота, проведённая из вершины <i>B</i> треугольника, пересекается с перпендикуляром, опущенным из точки <i>H</i> на прямую <i>CM</i>, в точке <i>Q</i>. Докажите, что прямые <i>CQ</i> и <i>BP</i> перпендикулярны.

Точка <i>M</i> – середина стороны <i>AC</i> треугольника <i>ABC</i>. На отрезках <i>AM</i> и <i>CM</i> выбраны точки <i>P</i> и <i>Q</i> соответственно таким образом, что  <i>PQ = <sup>AC</sup></i>/<sub>2</sub>.  Описанная окружность треугольника <i>ABQ</i> второй раз пересекает сторону <i>BC</i> в точке <i>X</i>, а описанная окружность треугольника <i>BCP</i>, второй раз пересекает сторону <i>AB</i> в точке <i>Y</i>. Докажите, что четырёхугольник <i>BXMY</i> – вписанный.

Пусть <i>A</i><sub>1</sub> и <i>C</i><sub>1</sub> – точки касания вписанной окружности со сторонами <i>BC</i> и <i>AB</i> соответственно, а <i>A'</i> и <i>C'</i> – точки касания вневписанной окружности треугольника, вписанной в угол <i>B</i>, с продолжениями сторон <i>BC</i> и <i>AB</i> соответственно. Докажите, что ортоцентр <i>H</i> треугольника <i>ABC</i> лежит на <i>A</i><sub>1</sub><i>C</i><sub>1</sub> тогда и только тогда, когда прямые <i>A'C</i><sub>1</sub> и <i>BA</i> перпендикулярны.

Дан неравнобедренный треугольник <i>ABC</i>. Точка <i>O</i> – центр его описанной окружности, а точка <i>K</i> – центр описанной окружности ω треугольника <i>BCO</i>. Высота треугольника <i>ABC</i>, проведенная из точки <i>A</i>, пересекает окружность ω в точке <i>P</i>. Прямая <i>PK</i> пересекает описанную окружность треугольника <i>ABC</i> в точках <i>E</i> и <i>F</i>. Докажите, что один из отрезков <i>EP</i> и <i>FP</i> равен отрезку <i>PA</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка