Олимпиадные задачи по математике для 11 класса
<i>H</i> – точка пересечения высот <i>AA'</i> и <i>BB'</i> остроугольного треугольника <i>ABC</i>. Прямая, перпендикулярная <i>AB</i>, пересекает эти высоты в точках <i>D</i> и <i>E</i>, а сторону <i>AB</i> – в точке <i>P</i>. Докажите, что ортоцентр треугольника <i>DEH</i> лежит на отрезке <i>CP</i>.
Четырёхугольник <i>ABCD</i> вписан в окружность. Перпендикуляр, опущенный из вершины <i>C</i> на биссектрису угла <i>ABD</i>, пересекает прямую <i>AB</i> в точке <i>C</i><sub>1</sub>; перпендикуляр, опущенный из вершины <i>B</i> на биссектрису угла <i>ACD</i>, пересекает прямую <i>CD</i> в точке <i>B</i><sub>1</sub>. Докажите, что <i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>AD</i>.
Пусть <i>a, b, c</i> – длины сторон произвольного треугольника; <i>p</i> – полупериметр; <i>r</i> – радиус вписанной окружности. Докажите неравенство <div align="center"><img src="/storage/problem-media/115857/problem_115857_img_2.gif"></div>
Диагонали вписанного четырёхугольника $ABCD$ пересекаются в точке $P$. Биссектриса угла $ABD$ пересекает диагональ $AC$ в точке $E$, а биссектриса угла $ACD$ – диагональ $BD$ в точке $F$. Докажите, что прямые $AF$ и $DE$ пересекаются на медиане треугольника $APD$.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $I_a$ – центр вневписанной окружности, соответствующей вершине $A$; $I'_a$ – точка, симметричная $I_a$ относительно прямой $AA_1$. Аналогично построим точки $I'_b$, $I'_c$. Докажите, что прямые $A_1I'_a$, $B_1I'_b$, $C_1I'_c$ пересекаются в одной точке.
Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.
Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$, касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.
Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.
В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
Высоты $AA_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$; $B_0$ – середина стороны $AC$. Прямая, проходящая через вершину $B$ параллельно $AC$, пересекает прямые $B_0A_1$, $B_0C_1$ в точках $A'$, $C'$ соответственно. Докажите, что прямые $AA'$, $CC'$, $BH$ пересекаются в одной точке.
Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.
Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.
Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей.
Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$. Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.
Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой.
<i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты треугольника <i>ABC, B</i><sub>0</sub> – точка пересечения <i>BB</i><sub>1</sub> и описанной окружности Ω, <i>Q</i> – вторая точка пересечения Ω и описанной окружности ω треугольника <i>A</i><sub>1</sub><i>C</i><sub>1</sub><i>B</i><sub>0</sub>. Докажите, что <i>BQ</i> – симедиана треугольника <i>ABC</i>.
Вписанная окружность неравнобедренного треугольника <i>ABC</i> касается сторон <i>AB, BC</i> и <i>ABC</i> в точках <i>C</i><sub>1</sub>, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> соответственно. Описанная окружность треугольника <i>A</i><sub>1</sub><i>BC</i><sub>1</sub> пересекает прямые <i>B</i><sub>1</sub><i>A</i><sub>1</sub> и <i>B</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> соответственно. Докажите, что ортоцентр <i>H</i> треугольник...
В прямоугольном неравнобедренном треугольнике <i>ABC</i> точка <i>M</i> – середина гипотенузы <i>AC</i>, точки <i>H<sub>a</sub></i>, <i>H<sub>c</sub></i> – ортоцентры треугольников <i>ABM, CBM</i> соответственно, прямые <i>AH<sub>c</sub>, CH<sub>a</sub></i> пересекаются в точке <i>K</i>. Докажите, что ∠<i>MBK</i> = 90°.
В неравнобедренном прямоугольном треугольнике <i>ABC</i> точка <i>M</i> – середина гипотенузы <i>AC</i>, точки <i>H<sub>a</sub>, H<sub>c</sub></i> – ортоцентры треугольников <i>ABM, CBM</i> соответственно. Докажите, что прямые <i>AH<sub>c</sub>, CH<sub>a</sub></i> пересекаются на средней линии треугольника <i>ABC</i>.
На окружности ω c центром <i>O</i> фиксированы точки <i>A</i> и <i>C</i>. Точка <i>B</i> движется по дуге <i>AC</i>. Точка <i>P</i> – фиксированная точка хорды <i>AC</i>. Прямая, проходящая через <i>P</i> параллельно <i>AO</i>, пересекает прямую <i>BA</i> в точке <i>A</i><sub>1</sub>; прямая, проходящая через <i>P</i> параллельно <i>CO</i>, пересекает прямую <i>BC</i> в точке <i>C</i><sub>1</sub>. Докажите, что центр описанной окружности треугольника <i>A</i><sub>1</sub><i>BC</i><sub>1</sub> движется по прямой.
В прямоугольном треугольнике <i>ABC</i> (∠<i>B</i> = 90°) проведена высота <i>BH</i>. Окружность, вписанная в треугольник <i>ABH</i>, касается сторон <i>AB, AH</i> в точках <i>H</i><sub>1</sub>, <i>B</i><sub>1</sub> соответственно; окружность, вписанная в треугольник <i>CBH</i>, касается сторон <i>CB, CH</i> в точках <i>H</i><sub>2</sub>, <i>B</i><sub>2</sub> соответственно. Пусть <i>O</i> – центр описанной окружности треугольника <i>H</i><sub>1</sub><i>BH</i><sub>2</sub>. Докажите, что <i>OB</i><sub>1</sub> = <i>OB</i...
Точки <i>M, N</i> – середины диагоналей <i>AC, BD</i> прямоугольной трапеции <i>ABCD</i> (∠<i>A</i> = ∠<i>D</i> = 90°). Описанные окружности треугольников <i>ABN, CDM</i> пересекают прямую <i>BC</i> в точках <i>Q, R</i>. Докажите, что точки <i>Q, R</i> равноудалены от середины отрезка <i>MN</i>.