Олимпиадные задачи по математике для 9 класса - сложность 2 с решениями
Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Натуральные числа <i>m</i> и <i>n</i> таковы, что НОК(<i>m, n</i>) + НОД(<i>m, n</i>) = <i>m + n</i>. Докажите, что одно из чисел <i>m</i> или <i>n</i> делится на другое.
Товарный поезд, отправившись из Москвы в <i>x</i> часов <i>y</i> минут, прибыл в Саратов в <i>y</i> часов <i>z</i> минут. Время в пути составило <i>z</i> часов <i>x</i> минут.
Найдите все возможные значения <i>x</i>.
На сторонах единичного квадрата отметили точки <i>K, L, M</i> и <i>N</i> так, что прямая <i>KM</i> параллельна двум сторонам квадрата, а прямая <i>LN</i> – двум другим сторонам квадрата. Отрезок <i>KL</i> отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок <i>MN</i>?
В треугольнике <i>ABC</i> проведены биссектрисы <i>AD</i> и <i>BE</i>. Известно, что <i>DE</i> – биссектриса угла <i>ADC</i>. Найдите величину угла <i>A</i>.
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему общему кратному?
(Среди чисел могут быть равные.)
Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок)
а) сто чисел,
б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (<i>a<sub>k</sub> = a</i><sub><i>k</i>–2</sub> – <i>a</i><sub><i>k</i>–1</sub>)?
Докажите, что существует такой набор из 100 различных натуральных чисел <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ..., <i>c</i><sub>100</sub>, что для любых двух соседних чисел <i>c<sub>i</sub></i> и <i>c</i><sub><i>i</i>+1</sub> этого набора сумма <img align="absmiddle" src="/storage/problem-media/98157/problem_98157_img_2.gif"> есть квадрат целого числа.
По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.
На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход.