Олимпиадные задачи по математике для 10 класса - сложность 1-5 с решениями

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.

Докажите, что сумма длин этих отрезков не меньше, чем   <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.

Докажите, что многогранник имеет хотя бы три равных ребра.

Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши.

100 красных точек разделили синюю окружность на 100 дуг, длины которых являются всеми натуральными числами от 1 до 100 в произвольном порядке. Докажите, что существуют две перпендикулярные хорды с красными концами.

Грани выпуклого многогранника – подобные треугольники.

Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

В пространстве расположена замкнутая шестизвенная ломаная <i>ABCDEF</i>, противоположные звенья которой параллельны  (<i>AB || DE,  BC || EF</i>  и

<i>CD || FA</i>).  При этом <i>AB</i> не равно <i>DE</i>. Докажите, что все звенья ломаной лежат в одной плоскости.

Квадрат <i>ABCD</i> разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура <i>F</i> является объединением всех прямоугольников, имеющих общие точки с диагональю <i>AC</i>. Докажите, что <i>AC</i> делит площадь фигуры <i>F</i> пополам.

В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.

Как сыграли между собой шахматисты, занявшие третье и седьмое места?

Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?

<div align="center"><img src="/storage/problem-media/111915/problem_111915_img_2.gif"></div>Угол <i>B</i> при вершине равнобедренного треугольника <i>ABC</i> равен 120°. Из вершины <i>B</i> выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания <i>AC</i> в точках <i>P</i> и <i>Q</i>, попали на боковые стороны в точки <i>M</i> и <i>N</i> (см. рис.). Докажите, что площадь треугольника <i>PBQ</i> равна сумме площадей треугольников <i>AMP</i> и <i>CNQ</i>.

При каких натуральных  <i>n</i> > 1  существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i>  (не все из которых равны), что при всех натуральных <i>k</i> число

(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>)  является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)

Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.

Числа <i>x, y, z</i> удовлетворяют равенству  <i>x + y + z</i> – 2(<i>xy + yz + xz</i>) + 4<i>xyz</i> = ½.  Докажите, что хотя бы одно из них равно ½.

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.

Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

Можно ли разбить правильный тетраэдр с ребром 1 на правильные тетраэдры и октаэдры, длины ребер каждого из которых меньше 1/100?

В выпуклом шестиугольнике <i>AC</i><sub>1</sub><i>BA</i><sub>1</sub><i>CB</i><sub>1</sub>   <i>AB</i><sub>1</sub> = <i>AC</i><sub>1</sub>,  <i>BC</i><sub>1</sub> = <i>BA</i><sub>1</sub>,  <i>CA</i><sub>1</sub> = <i>CB</i><sub>1</sub>  и  ∠<i>A</i> + ∠<i>B</i> + ∠<i>C</i> = ∠<i>A</i><sub>1</sub> + ∠<i>B</i><sub>1</sub> + ∠<i>C</i><sub>1</sub>.

Докажите, что площадь треугольника <i>ABC</i> равна половине площади шестиугольника.

В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

Рассматривается произвольный многоугольник (не обязательно выпуклый).

  а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?

  б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем &frac13; площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)

Для натуральных чисел <i>x</i> и <i>y</i> число  <i>x</i>² + <i>xy + y</i>²  в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.

На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.

Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.

2<i>n</i> радиусов разделили круг на 2<i>n</i> равных секторов: <i>n</i> синих и <i>n</i> красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до <i>n</i>. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до <i>n</i>.

Имеется 19 гирек весов 1, 2, 3, ..., 19 г: девять железных, девять бронзовых и одна золотая. Известно, что общий вес всех железных гирек на 90 г больше общего веса бронзовых. Найдите вес золотой гирьки.

Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).

Найдите объём исходного куба.

Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер  <i>a, b, c</i>  этого куба.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка