Олимпиадные задачи по математике для 9 класса - сложность 3 с решениями

Дан равнобедренный треугольник <i>ABC</i>, в котором  ∠<i>B</i> = 120°.  На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> взяли точки <i>P</i> и <i>Q</i> соответственно так, что лучи <i>AQ</i> и <i>CP</i> пересекаются под прямым углом. Докажите, что  ∠<i>PQB</i> = 2∠<i>PCQ</i>.

Дан равносторонний треугольник <i>ABC</i> и прямая <i>l</i>, проходящая через его центр. Точки пересечения этой прямой со сторонами <i>AB</i> и <i>BC</i> отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника <i>ABC</i>.

В треугольнике <i>ABC</i>  <i>AB – BC</i> = <img align="absmiddle" src="/storage/problem-media/115902/problem_115902_img_2.gif">.  Пусть <i>M</i> – середина стороны <i>AC</i>, а <i>BN</i> – биссектриса.  Докажите, что  ∠<i>BMC</i> + ∠<i>BNC</i> = 90°.

Радиусы описанной и вписанной окружностей треугольника <i>ABC</i> равны <i>R</i> и <i>r</i>; <i>O, I</i> – центры этих окружностей. Внешняя биссектриса угла <i>C</i> пересекает прямую <i>AB</i> в точке <i>P</i>. Точка <i>Q</i> – проекция точки <i>P</i> на прямую <i>OI</i>. Найдите расстояние <i>OQ</i>.

Окружность ω с центром <i>O</i> вписана в угол <i>BAC</i> и касается его сторон в точках <i>B</i> и <i>C</i>. Внутри угла <i>BAC</i> выбрана точка <i>Q</i>. На отрезке <i>AQ</i> нашлась такая точка <i>P</i>, что  <i>AQ</i> ⊥ <i>OP</i>.  Прямая <i>OP</i> пересекает описанные окружности ω<sub>1</sub> и ω<sub>2</sub> треугольников <i>BPQ</i> и <i>CPQ</i>, вторично в точках <i>M</i> и <i>N</i>. Докажите, что  <i>OM = ON</i>.

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?

Треугольники <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> подобны и по-разному ориентированы. На отрезке <i>AA</i><sub>1</sub> взята такая точка <i>A'</i>, что  <i>AA'</i> : <i>A</i><sub>1</sub><i>A' = BC</i> : <i>B</i><sub>1</sub><i>C</i><sub>1</sub>.  Аналогично строим <i>B'</i> и <i>C'</i>. Докажите, что <i>A', B'</i> и <i>C'</i> лежат на одной прямой.

Пусть <i>I<sub>A</sub></i> и <i>I<sub>B</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>CA</i> треугольника <i>ABC</i> соответственно, а <i>P</i> – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных окружностей треугольников <i>I<sub>A</sub>CP</i> и <i>I<sub>B</sub>CP</i>, совпадает с центром окружности Ω.

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AH<sub>A</sub>, BH<sub>B</sub></i> и <i>CH<sub>C</sub></i>.

Докажите, что треугольник с вершинами в ортоцентрах треугольников <i>AH<sub>B</sub>H<sub>C</sub>, BH<sub>A</sub>H<sub>C</sub></i> и <i>CH<sub>A</sub>H<sub>B</sub></i> равен треугольнику <i>H<sub>A</sub>H<sub>B</sub>H<sub>C</sub></i>.

Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.

Равносторонний треугольник <i>ABC</i> вписан в окружность Ω и описан вокруг окружности ω. На сторонах <i>AC</i> и <i>AB</i> выбраны точки <i>P</i> и <i>Q</i> соответственно так, что отрезок <i>PQ</i> проходит через центр <i>O</i> треугольника <i>ABC</i>. Окружности Г<sub><i>b</i></sub> и Г<sub><i>c</i></sub> построены на отрезках <i>BP</i> и <i>CQ</i> как на диаметрах.

Докажите, что окружности Г<sub><i>b</i></sub> и Г<sub><i>c</i></sub> пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.

Равносторонний треугольник <i>ABC</i> вписан в окружность Ω и описан вокруг окружности ω. На сторонах <i>AC</i> и <i>AB</i> выбраны точки <i>P</i> и <i>Q</i> соответственно так, что отрезок <i>PQ</i> касается ω. Окружность Ω<sub><i>b</i></sub> с центром <i>P</i> проходит через вершину <i>B</i>, а окружность Ω<sub><i>c</i></sub> с центром <i>Q</i> – через <i>C</i>. Докажите, что окружности Ω, Ω<sub><i>b</i></sub> и Ω<sub><i>c</i></sub> имеют общую точку.

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.

  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?

  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

На плоскости отмечена точка <i>M</i>, не лежащая на осях координат. По оси ординат движется точка <i>Q</i>, а по оси абсцисс точка <i>P</i> так, что угол <i>PMQ</i> всегда остаётся прямым. Найдите геометрическое место точек <i>N</i>, симметричных <i>M</i> относительно <i>PQ</i>.

Даны две точки <i>A</i> и <i>B</i>. Найдите геометрическое место таких точек <i>C</i>, что точки <i>A, B</i> и <i>C</i> можно накрыть кругом единичного радиуса.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка