Олимпиадные задачи из источника «2006-2007» для 7 класса
2006-2007
НазадОт Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.
Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
Два игрока по очереди проводят диагонали в правильном (2<i>n+</i>1)-угольнике (<i>n</i> > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Внутри равнобедренного треугольника <i>ABC</i> (<i>AB = BC</i>) выбрана точка <i>M</i> таким образом, что ∠<i>AMC</i> = 2∠<i>B</i>. На отрезке <i>AM</i> нашлась такая точка <i>K</i>, что
∠<i>BKM</i> = ∠<i>B</i>. Докажите, что <i>BK = KM + MC</i>.
Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif"> делится на <i>p</i><sub>2</sub>, <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif"> делится на <i>p</i><sub>3</sub>, ..., <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif"> делится на <i>p</i><sub>1</sub>?
Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.