Олимпиадные задачи из источника «2004-2005» для 8 класса - сложность 2-3 с решениями
2004-2005
НазадДан остроугольный треугольник <i>ABC</i>. Точки <i>B'</i> и <i>C'</i> симметричны соответственно вершинам <i>B</i> и <i>C</i> относительно прямых <i>AC</i> и <i>AB</i>. Пусть <i>P</i> – точка пересечения описанных окружностей треугольников <i>ABB'</i> и <i>ACC'</i>, отличная от <i>A</i>. Докажите, что центр описанной окружности треугольника <i>ABC</i> лежит на прямой <i>PA</i>.
Известно, что сумма цифр натурального числа <i>N</i> равна 100, а сумма цифр числа 5<i>N</i> равна 50. Докажите, что <i>N</i> чётно.
Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?
В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (<i>k</i>-й сдвиг происходит на2<i><sup>k-</sup></i>1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника?
В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.
В треугольнике <i>ABC</i> (<i> AB < BC</i>) точка <i>I</i> – центр вписанной окружности, <i>M</i> – середина стороны <i>AC, N</i> – середина дуги <i> ABC </i> описанной окружности.
Докажите, что ∠<i>IMA</i> = ∠<i>INB</i>.
В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?
Найдите все такие пары (<i>a, b</i>) натуральных чисел, что при любом натуральном <i>n</i> число <i>a<sup>n</sup> + b<sup>n</sup></i> является точной (<i>n</i>+1)-й степенью.
Известно, что существует число<i> S </i>, такое, что если<i> a+b+c+d=S </i>и<i> <img src="/storage/problem-media/110174/problem_110174_img_2.gif">+<img src="/storage/problem-media/110174/problem_110174_img_3.gif">+<img src="/storage/problem-media/110174/problem_110174_img_4.gif">+<img src="/storage/problem-media/110174/problem_110174_img_5.gif">=S </i>(<i> a </i>,<i> b </i>,<i> c </i>,<i> d </i>отличны от нуля и единицы), то<i> <img src="/storage/problem-media/110174/problem_110174_img_6.gif">+ <img src="/storage/problem-media/110174/problem_110174_img_7.gif">+ <img src="/storage/problem-media/11017...
Сумма чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, каждое из которых больше единицы, равна <i>S</i>, причём <img align="middle" src="/storage/problem-media/109832/problem_109832_img_2.gif"> для любого <i>i</i> = 1, 2, 3.
Докажите, что <img align="middle" src="/storage/problem-media/109832/problem_109832_img_3.gif">
Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Верно ли, что Олег может выбрать такие две клетки, соседние по стороне или вершине, что сумма чисел, стоящих в этих клетках, делится на 4?
В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?
В таблице 2×<i>n</i> расставлены положительные числа так, что в каждом из <i>n</i> столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила <sup><i>n</i>+1</sup>/<sub>4</sub>.
Найдите наименьшее натуральное число, не представимое в виде <img align="absmiddle" src="/storage/problem-media/109823/problem_109823_img_2.gif"> , где <i>a, b, c, d</i> – натуральные числа.
В четырёхугольнике <i>ABCD</i> углы <i>A</i> и <i>C</i> равны. Биссектриса угла <i>B</i> пересекает прямую <i>AD</i> в точке <i>P</i>. Перпендикуляр к <i>BP</i>, проходящий через точку <i>A</i>, пересекает прямую <i>BC</i> в точке <i>Q</i>. Докажите, что прямые <i>PQ</i> и <i>CD</i> параллельны.
Дан параллелограмм <i>ABCD</i> (<i>AB < BC</i>). Докажите, что описанные окружности треугольников <i>APQ</i> для всевозможных точек <i>P</i> и <i>Q</i>, выбранных на сторонах <i>BC</i> и <i>CD</i> соответственно так, что <i>CP = CQ</i>, имеют общую точку, отличную от <i>A</i>.