Олимпиадные задачи из источника «Заключительный этап»
Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, T</i> – центр описанной окружности треугольника <i>AOC, M</i> – середина <i>AC</i>. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>D</i> и <i>E</i> соответственно так, что ∠<i>BDM</i> = ∠<i>BEM</i> = ∠<i>B</i>. Докажите, что <i>BT</i> ⊥ <i>DE</i>.
Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется <i>хорошей</i>, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?
В кабинете президента стоят 2004 телефона, любые два из которых соединены проводом одного из четырёх цветов. Известно, что провода всех четырёх цветов присутствуют. Всегда ли можно выбрать несколько телефонов так, чтобы среди соединяющих их проводов встречались провода ровно трех цветов?
Существуют ли такие попарно различные натуральные числа <i>m, n, p, q</i>, что <i>m + n = p + q</i> и <img align="absmiddle" src="/storage/problem-media/109812/problem_109812_img_2.gif">
Даны натуральное число <i>n</i> > 3 и положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, произведение которых равно 1.
Докажите неравенство <img align="middle" src="/storage/problem-media/109811/problem_109811_img_2.gif">
На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики?
Четырехугольник<i> ABCD </i>описан около окружности. Биссектрисы внешних углов<i> A </i>и<i> B </i>пересекаются в точке<i> K </i>, внешних углов<i> B </i>и<i> C </i>– в точке<i> L </i>, внешних углов<i> C </i>и<i> D </i>– в точке<i> M </i>, внешних углов<i> D </i>и<i> A </i>– в точке<i> N </i>. Пусть<i> K<sub>1</sub> </i>,<i> L<sub>1</sub> </i>,<i> M<sub>1</sub> </i>,<i> N<sub>1</sub> </i>– точки пересечения высот треугольников<i> ABK </i>,<i> BCL </i>,<i> CDM </i>,<i> DAN </i>соответственно. До...
Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.
Существует ли такое натуральное число <i>n</i> > 10<sup>1000</sup>, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
Треугольник<i> T </i>содержится внутри выпуклого центрально-симметричного многоугольника<i> M </i>. Треугольник<i> T' </i>получается из треугольника<i> T </i>центральной симметрией относительно некоторой точки<i> P </i>, лежащей внутри треугольника<i> T </i>. Докажите, что хотя бы одна из вершин треугольника<i> T' </i>лежит внутри или на границе многоугольника<i> M </i>.
В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.
Последовательность неотрицательных рациональных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... удовлетворяет соотношению <i>a<sub>m</sub> + a<sub>n</sub> = a<sub>mn</sub></i> при любых натуральных <i>m, n</i>.
Докажите, что не все её члены различны.
Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...
На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик?
В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником. Известно, что этот шестиугольник можно поместить в некоторый прямоугольник<i> Π </i>. Докажите, что в прямоугольник<i> Π </i>можно поместить одну из граней параллелепипеда.
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими <i> k </i> авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на <i>k</i> + 2 группы так, что никакие два города из одной группы не соединены авиалинией.
Докажите, что не существует конечного множества, содержащего более2<i>N </i>(<i> N></i>3) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.<ol type="1"> <li>Для любых <i> N </i> векторов этого множества найдется еще такой <i> N-</i>1 вектор из этого множества, что сумма всех 2<i>N-</i>1 векторов равна нулю;
</li><li>для любых <i> N </i> векторов этого множества найдутся еще такие <i> N </i> векторов из этого множества, что сумма всех 2<i>N </i> векторов равна нулю. </li></ol>
Пусть<i> M={x<sub>1</sub>, .., x</i>30<i>} </i>– множество, состоящее из 30 различных положительных чисел;<i> A<sub>n</sub> </i>(1<i><img src="/storage/problem-media/109798/problem_109798_img_2.gif"> n<img src="/storage/problem-media/109798/problem_109798_img_2.gif"> </i>30) – сумма всевозможных произведений различных<i> n </i>элементов множества<i> M </i>. Докажите, что если<i> A</i>15<i>>A</i>10, то<i> A<sub>1</sub>></i>1.
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Даны многочлены <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>). Известно, что для некоторого многочлена <i>R</i>(<i>x, y</i>) выполняется равенство <i>P</i>(<i>x</i>) – <i>P</i>(<i>y</i>) = <i>R</i>(<i>x, y</i>)(<i>Q</i>(<i>x</i>) – <i>Q</i>(<i>y</i>)).
Докажите, что существует такой многочлен <i>S</i>(<i>x</i>), что <i>P</i>(<i>x</i>) = <i>S</i>(<i>Q</i>(<i>x</i>)).
Пусть <i>I<sub>A</sub></i> и <i>I<sub>B</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>CA</i> треугольника <i>ABC</i> соответственно, а <i>P</i> – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных окружностей треугольников <i>I<sub>A</sub>CP</i> и <i>I<sub>B</sub>CP</i>, совпадает с центром окружности Ω.