Олимпиадные задачи из источника «Региональный этап» для 10 класса - сложность 1-3 с решениями

Докажите, что если  0 < <i>a, b</i> < 1,  то   <img align="middle" src="/storage/problem-media/109897/problem_109897_img_2.gif"> .

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

Пусть <i>a, b</i> и <i>c</i> – попарно взаимно простые натуральные числа. Найдите все возможные значения  <img align="absmiddle" src="/storage/problem-media/109894/problem_109894_img_2.gif">,  если известно, что это число целое.

В каждой клетке квадратной таблицы размером <i>n×n</i> клеток  (<i>n</i> ≥ 3)  записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить <i>n</i> получившихся произведений, то сумма будет равна 0. Докажите, что число <i>n</i> делится на 4.

Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?

Докажите, что если <i>a, b, c</i> – положительные числа и  <i>ab + bc + ca > a + b + c</i>,  то  <i>a + b + c</i> > 3.

Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?

Найдите все такие натуральные <i>n</i>, что при некоторых различных натуральных <i>a, b, c</i> и <i>d</i> среди чисел <div align="center"><img src="/storage/problem-media/109883/problem_109883_img_2.gif"></div>есть по крайней мере два числа, равных<i>n</i>.

Дана функция<i> f</i>(<i>x</i>)<i> = | </i>4<i> - </i>4<i>|x|| - </i>2. Сколько решений имеет уравнение<i> f</i>(<i>f</i>(<i>x</i>))<i> = x </i>?

Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса<i> <img src="/storage/problem-media/109880/problem_109880_img_2.gif"> </i>с центрами в вершинах покрывают весь треугольник.

Назовем медианой системы 2<i> n </i>точек плоскости прямую, проходящую ровно через две из них, по обе стороны от которой точек этой системы поровну. Какое наименьшее количество медиан может быть у системы из 2<i> n </i>точек, никакие три из которых не лежат на одной прямой?

В треугольнике <i>ABC</i> взята такая точка <i>O</i>, что  ∠<i>COA</i> = ∠<i>B</i> + 60°,  ∠<i>COB</i> = ∠<i>A</i> + 60°, <i>AOB</i> = ∠<i>C</i> + 60°.  Докажите, что если из отрезков <i>AO, BO</i> и <i>CO</i> можно составить треугольник, то из высот треугольника <i>ABC</i> тоже можно составить треугольник и эти треугольники подобны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка