Олимпиадные задачи из источника «Турнир городов» для 5-9 класса - сложность 2 с решениями

Турнир городов

Назад

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

а) Внутри окружности находится некоторая точка <i>A</i>. Через <i>A</i> провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.

Докажите, что центр масс этих точек не зависит от выбора таких двух прямых. б) Внутри окружности находится правильный 2<i>n</i>-угольник  (<i>n</i> > 2),  его центр <i>A</i> не обязательно совпадает с центром окружности. Лучи, выпущенные из <i>A</i> в вершины 2<i>n</i>-угольника, высекают 2<i>n</i> точек на окружности. 2<i>n</i>-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2<i>n</i> новых точек. Докажите, что их центр масс совпадает с центром масс старых 2<i>n</i> точек....

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.

На какую наибольшую степень двойки может делиться такое число?

В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовал хотя бы один школьник этого класса.

Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>20</sub> всех экскурсий.

Окружность касается сторон <i>AB, BC, CD</i> параллелограмма <i>ABCD</i> в точках <i>K, L, M</i> соответственно.

Докажите, что прямая <i>KL</i> делит пополам высоту параллелограмма, опущенную из вершины <i>C</i> на <i>AB</i>.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>. (Например,  <i>C</i>(10) = 2,  <i>C</i>(11) = 1,  <i>C</i>(12) = 2.)

Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

Про группу из пяти человек известно, что:    Алеша на 1 год старше Алексеева,

   Боря на 2 года старше Борисова,

   Вася на 3 года старше Васильева,

   Гриша на 4 года старше Григорьева,

   а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

В выражении  10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1  расставили скобки так, что в результате вычислений получилось целое число. Каким

а) наибольшим;  б) наименьшим может быть это число?

Дан параллелограмм <i>ABCD</i>. Вписанные окружности треугольников <i>ABC</i> и <i>ADC</i> касаются диагонали <i>AC</i> в точках <i>X</i> и <i>Y</i>. Вписанные окружности треугольников <i>BCD</i> и <i>BAD</i> касаются диагонали <i>BD</i> в точках <i>Z</i> и <i>T</i>. Докажите, что если все точки <i>X, Y, Z, T</i> различны, то они являются вершинами прямоугольника.

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.

Какое наибольшее число различных может быть среди чисел на доске?

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.

Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?

(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?

Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?

На окружности расставлены 999 чисел, каждое равно 1 или –1, причём не все числа одинаковые. Возьмём все произведения по 10 подряд стоящих чисел и сложим их.

  а) Какая наименьшая сумма может получиться?

  б) А какая наибольшая?

В треугольнике <i>ABC</i> точка <i>M</i> – середина стороны <i>AC</i>, точка <i>P</i> лежит на стороне <i>BC</i>. Отрезок <i>AP</i> пересекает <i>BM</i> в точке <i>O</i>. Оказалось, что  <i>BO = BP</i>. Найдите отношение <i>OM</i> : <i>PC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка