Олимпиадные задачи из источника «Турнир городов» для 10 класса - сложность 2 с решениями

Турнир городов

Назад

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Через вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что  <i>MK = KN</i>.

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:

   а) равные многоугольники;

   б) правильные многоугольники?

Четырёхугольник <i>ABCD</i> без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду <i>AB</i>, а другая – хорду <i>CD</i>, отметим их точку касания <i>X</i>. Докажите, что все такие точки <i>X</i> лежат на одной окружности.

На плоскости нарисовали кривые  <i>y</i> = cos <i>x</i>  и  <i>x</i> = 100 cos(100<i>y</i>)  и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите  <sup><i>a</i></sup>/<sub><i>b</i></sub>.

Дана клетчатая полоска из 2<i>n</i> клеток, пронумерованных слева направо следующим образом:1, 2, 3, ..., <i>n</i>, –<i>n</i>, ..., –2, –1 По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2<i>n</i> + 1  простое.

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.

Докажите, что многогранник имеет хотя бы три равных ребра.

В клетках таблицы <i>n×n</i> стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за <i>n</i> ходов.

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.

Какое наибольшее число различных может быть среди чисел на доске?

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.

  а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число  <i>a</i> ≠ 1,  и разрезать этот кусок в отношении  1 : <i>a</i>  по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?

  б) Тот же вопрос, но выбирается положительное рациональное  <i>a</i> ≠ 1.

Четырёхугольник <i>ABCD</i> описан около окружности с центром <i>I</i>. Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>CD</i>. Известно, что  <i>IM</i> : <i>AB = IN</i> : <i>CD</i>.

Докажите, что <i>ABCD</i> – трапеция или параллелограмм.

Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?

Барон Мюнхгаузен попросил задумать непостоянный многочлен <i>P</i>(<i>x</i>) с целыми неотрицательными коэффициентами и сообщить ему только значения <i>P</i>(2) и <i>P</i>(<i>P</i>(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?

Можно ли поверхность октаэдра оклеить несколькими правильными шестиугольниками без наложений и пробелов?

Про функцию <i>f</i>(<i>x</i>) известно следующее: любая прямая на координатной плоскости имеет с графиком  <i>y = f</i>(<i>x</i>)  столько же общих точек, сколько с параболой  <i>y = x</i>².  Докажите, что  <i>f</i>(<i>x</i>) ≡ <i>x</i>².

Из Южной Америки в Россию 2010 кораблей везут бананы, лимоны и ананасы. Число бананов на каждом корабле равно числу лимонов на остальных кораблях вместе взятых, а число лимонов на каждом корабле равно числу ананасов на остальных кораблях вместе взятых. Докажите, что общее число фруктов делится на 31.

100 пиратов сыграли в карты на золотой песок, а потом каждый посчитал, сколько он в сумме выиграл либо проиграл. У каждого проигравшего хватает золота, чтобы расплатиться. За одну операцию пират может либо раздать всем поровну золота, либо получить с каждого поровну золота. Докажите, что можно за несколько таких операций добиться того, чтобы каждый получил (в сумме) свой выигрыш либо выплатил проигрыш. (Разумеется, общая сумма выигрышей равна сумме проигрышей.)

В треугольнике <i>ABC</i> точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – основания высот из вершин <i>A, B, C</i>, точки <i>C<sub>А</sub></i> и <i>C<sub>В</sub></i> – проекции <i>C</i><sub>1</sub> на <i>AC</i> и <i>BC</i> соответственно.

Докажите, что прямая <i>C<sub>А</sub>C<sub>В</sub></i> делит пополам отрезки <i>C</i><sub>1</sub><i>A</i><sub>1</sub> и <i>C</i><sub>1</sub><i>B</i><sub>1</sub>.

Петя отметил на плоскости несколько (больше двух) точек, все расстояния между которыми различны. Пару отмеченных точек  (<i>A, B</i>)  назовём <i>необычной</i>, если <i>A</i> – самая дальняя от <i>B</i> отмеченная точка, а <i>B</i> – ближайшая к <i>A</i> отмеченная точка (не считая самой точки <i>A</i>). Какое наибольшее возможное количество необычных пар могло получиться у Пети?

Известно, что  0 < <i>a, b, c, d</i> < 1  и  <i>abcd</i> = (1 – <i>a</i>)(1 – <i>b</i>)(1 – <i>c</i>)(1 – <i>d</i>).  Докажите, что   (<i>a + b + c + d</i>) – (<i>a + c</i>)(<i>b + d</i>) ≥ 1.

Гости за круглым столом ели изюм из корзины с 2011 изюминками. Оказалось, что каждый съел либо вдвое больше, либо на 6 меньше изюминок, чем его сосед справа. Докажите, что были съедены не все изюминки.

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка