Олимпиадные задачи из источника «40 турнир (2018/2019 год)» для 10 класса
40 турнир (2018/2019 год)
НазадВнутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$.
Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции:
-
съедает какую-то котлету вместе со всеми сидящими на ней мухами;
-
пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух).
Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.
Про натуральные числа $x$, $y$ и $z$ известно, что $\operatorname{НОД}(x,y,z) = 1$ и $x^2+y^2+z^2=2(xy+yz+zx)$. Докажите, что $x$, $y$ и $z$ – квадраты натуральных чисел.
Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)
Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?
В таблице $n\times n$ стоят все целые числа от 1 до $n^2$, по одному в клетке. В каждой строке числа возрастают слева направо, в каждом столбце – снизу вверх. Докажите, что наименьшая возможная сумма чисел на главной диагонали, идущей сверху слева вниз направо, равна $1^2+2^2+\ldots+n^2$.
Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует <i>червяк</i> – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно $n > 2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$. (Червяки разные, если состоят из разных наборов клеток.)
Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_{1}, ..., x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0 \leqslant x_{1} \leqslant ... \leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
б) А квадрат площади <sup>1</sup>/<sub>2019</sub>?
На экране компьютера напечатано некоторое натуральное число, кратное 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.
Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни. Какое наибольшее суммарное количество очков он может при этом получить?
Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что $CK = AB = BC$ и ∠ <i>KAC</i> = 30°. Найдите угол $AKB$.
В клетках квадратной таблицы $n\times n$, где $n$ > 1, требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно?
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.
На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Король вызвал двух мудрецов и объявил им задание: первый задумывает семь различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвёртое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?
Фокусник с помощником показывают фокус. В ряд стоят 13 закрытых пустых шкатулок. Фокусник уходит, а зритель на виду у помощника прячет по монетке в любые две шкатулки по своему выбору. Затем возвращается фокусник. Помощник открывает одну шкатулку, в которой нет монетки. Далее фокусник указывает на 4 шкатулки, и их одновременно открывают. Цель фокусника – открыть обе шкатулки с монетками. Предложите способ, как договориться фокуснику с помощником, чтобы этот фокус всегда удавался. .
Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.
Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$?
Расстояние от некоторой точки внутри правильного шестиугольника до трёх его последовательных вершин равны 1, 1 и 2 соответственно.
Чему равна сторона этого шестиугольника?
Фокусник с помощником показывают фокус. В ряд стоят 12 закрытых пустых шкатулок. Фокусник уходит, а зритель на виду у помощника прячет по монетке в любые две шкатулки по своему выбору. Затем возвращается фокусник. Помощник открывает одну шкатулку, в которой нет монетки. Далее фокусник указывает на 4 шкатулки, и их одновременно открывают. Цель фокусника – открыть обе шкатулки с монетками. Предложите способ, как договориться фокуснику с помощником, чтобы этот фокус всегда удавался.
В прямоугольник $ABCD$ вписывают равнобедренные треугольники с заданным углом α при вершине, противолежащей основанию, так, что эта вершина лежит на отрезке $BC$, а концы основания – на отрезках $AB$ и $CD$. Докажите, что середины оснований у всех таких треугольников совпадают.
Произведение натуральных чисел $m$ и $n$ делится на их сумму. Докажите, что $m + n \leqslant n^2$.