Олимпиадные задачи из источника «12 турнир (1990/1991 год)» для 11 класса

В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более пяти дорог.

  а) Докажите, что это возможно.

  б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются <i>эквивалентными</i>, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.

  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?

  б) Та же задача для <i>n</i> отмеченных точек.

Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.

(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

На плоскости расположено 20 точек, никакие три из которых не лежат на одной прямой, из них 10 синих и 10 красных.

Докажите, что можно провести прямую, по каждую сторону которой лежит пять синих и пять красных точек.

Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость разбита на равносторонние треугольники со стороной 1.

<i>M</i> – множество всех их вершин. <i>A</i> и <i>B</i> – две вершины одного треугольника. Разрешается поворачивать плоскость на 120° вокруг любой из вершин множества <i>M</i>. Можно ли за несколько таких преобразований перевести точку <i>A</i> в точку <i>B</i>?

В колоду сложено <i>n</i> различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все <i>n</i> карт в обратном порядке.

  а) Докажите, что при  <i>n</i> = 9  это можно сделать за 5 операций;

Докажите, что при  <i>n</i> = 52  это

  б) можно сделать за 27 операций;

  в) нельзя сделать за 17 операций;

  г) нельзя сделать за 26 операций.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка