Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс»

Дана фиксированная хорда <i>MN</i> окружности, не являющаяся диаметром. Для каждого диаметра <i> AB </i> этой окружности, не проходящего через точки <i>M</i> и <i>N</i>, рассмотрим точку <i>C</i>, в которой пересекаются прямые <i>AM</i> и <i>BN</i>, и проведём через неё прямую <i>l</i>, перпендикулярную <i>AB</i>. Докажите, что все прямые <i>l</i> проходят через одну точку.

В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.

(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в каждый, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более пяти дорог.

  а) Докажите, что это возможно.

  б) Докажите, что если в формулировке заменить число 5 на число 4, то желание короля станет неосуществимым.

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются <i>эквивалентными</i>, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.

  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?

  б) Та же задача для <i>n</i> отмеченных точек.

Сумма <i>n</i> чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше  – <sup>1</sup>/<sub><i>n</i></sub>.

Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка