Олимпиадные задачи из источника «1964 год» - сложность 3-5 с решениями

При дворе короля Артура собрались 2<i>n</i>рыцарей, причём каждый из них имеет среди присутствующих не более  <i>n</i>– 1  врага. Доказать, что Мерлин, советник Артура, может так рассадить рыцарей за круглым столом, что ни один из них не будет сидеть рядом со своим врагом.

Пирог имеет форму правильного <i>n</i>-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок.

В треугольнике <i>ABC</i> сторона <i>BC</i> равна полусумме двух других сторон. Через точку <i>A</i> и середины <i>B', C'</i> сторон <i>AB</i> и <i>AC</i> проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром <i>I</i> вписанной окружности треугольника <i>ABC</i>.

Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа <i>n</i> существуют ровно <i>n</i> карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.

Дан треугольник<i>ABC</i>, причём сторона<i>BC</i>равна полусумме двух других сторон. Доказать, что в таком треугольнике вершина<i>A</i>, середины сторон<i>AB</i>и<i>AC</i>и центры вписанной и описанной окружностей лежат на одной окружности (сравните с<a href="http://www.problems.ru/view_problem_details_new.php?id=78539">задачей 4 для 9 класса</a>).

Дана система из<i>n</i>точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.

В <i>n</i> мензурок налиты <i>n</i> разных жидкостей, кроме того, имеется одна пустая мензурка. Можно ли за конечное число операций составить равномерные смеси в каждой мензурке, то есть сделать так, чтобы в каждой мензурке было равно <sup>1</sup>/<sub><i>n</i></sub> от начального количества каждой жидкости, и при этом одна мензурка была бы пустой. (Мензурки одинаковые, но количества жидкостей в них могут быть разными; предполагается, что можно отмерять любой объём жидкости.)

На клетчатой бумаге начерчена замкнутая ломаная с вершинами в узлах сетки, все звенья которой равны.

Доказать, что число звеньев такой ломаной чётно.

В треугольнике<i>ABC</i>сторона<i>BC</i>равна полусумме двух других сторон. Доказать, что биссектриса угла<i>A</i>перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.

Внутри равностороннего (не обязательно правильного) семиугольника<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>7</sub>взята произвольно точка<i>O</i>. Обозначим через<i>H</i><sub>1</sub>,<i>H</i><sub>2</sub>,...,<i>H</i><sub>7</sub>основания перпендикуляров, опущенных из точки<i>O</i>на стороны<i>A</i><sub>1</sub><i>A</i><sub>2</sub>,<i>A</i><sub>2</sub><i>A</i><sub>3</sub>,...,<i>A</i><sub>7</sub><i>A</i><sub>1</sub>соответственно. Известно, что точки<i>H</i>&l...

Даны три точки<i>A</i>,<i>B</i>,<i>C</i>, лежащие на одной прямой, и точка<i>O</i>вне этой прямой. Обозначим через<i>O</i><sub>1</sub>,<i>O</i><sub>2</sub>,<i>O</i><sub>3</sub>центры окружностей, описанных около треугольников<i>OAB</i>,<i>OAC</i>,<i>OBC</i>. Доказать, что точки<i>O</i><sub>1</sub>,<i>O</i><sub>2</sub>,<i>O</i><sub>3</sub>и<i>O</i>лежат на одной окружности.

В<i>n</i>стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких<i>n</i>можно в конечное число шагов слить воду в один стакан?

Через противоположные вершины<i>A</i>и<i>C</i>четырёхугольника<i>ABCD</i>проведена окружность, пересекающая стороны<i>AB</i>,<i>BC</i>,<i>CD</i>и<i>AD</i>соответственно в точках<i>M</i>,<i>N</i>,<i>P</i>и<i>Q</i>. Известно, что<i> BM = BN = DP = DQ = R </i>, где<i>R</i>— радиус данной окружности.

Доказать, что в таком случае сумма углов<i>B</i>и<i>D</i>данного четырёхугольника равна120<sup><tt>o</tt></sup>.

На какое наименьшее число непересекающихся тетраэдров можно разбить куб?

Решить в целых числах уравнение   <img width="141" height="87" align="MIDDLE" border="0" src="/storage/problem-media/78517/problem_78517_img_2.gif"> = <i>m</i>.

На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются <i>узлами, звеном</i>" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка