Олимпиадные задачи из источника «1952 год» для 10 класса - сложность 2 с решениями

Решить систему уравнений:   <i>x</i><sub>1</sub><i>x</i><sub>2</sub> = <i>x</i><sub>2</sub><i>x</i><sub>3</sub> = ... = <i>x</i><sub><i>n</i>–1</sub><i>x<sub>n</sub> = x<sub>n</sub>x</i><sub>1</sub> = 1.

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.

Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Если при любом положительном <i>p</i> все корни уравнения  <i>ax</i>² + <i>bx + c + p</i> = 0  действительны и положительны, то коэффициент <i>a</i> равен нулю. Докажите.

Докажите, что  2<sup><i>n</i></sup> > (1 – <i>x</i>)<sup><i>n</i></sup> + (1 + <i>x</i>)<sup><i>n</i></sup>  при целом  <i>n</i> ≥ 2  и  |<i>x</i>| < 1.

Докажите, что<div align="CENTER"> $\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1, </div>если |<i>x</i>| < 1 и |<i>y</i>| < 1.

Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка