Олимпиадные задачи из источника «Математический праздник» для 8 класса - сложность 3 с решениями

Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

Легко разместить комплект кораблей для игры в "Морской бой" на доске 10× 10 (см. рис.). А на какой наименьшей квадратной доске можно разместить этот комплект? (Напомним, что согласно правилам корабли не должны соприкасаться даже углами.)

<center><i> <img align="absmiddle" src="/storage/problem-media/115384/problem_115384_img_2.gif"> </i></center>

Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?

  а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?

  б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?

Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка <i>A</i> на плане) до своего отеля (точка <i>B</i>). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет. <div align="center"><img align="absmiddle" src="/storage/problem-media/111897/problem_111897_img_2.gif"></div>

Буратино ходит по улицам города, на одном из перекрёстков которого зарыт клад. На каждом перекрёстке ему по радио сообщают, приблизился он к кладу или удалился (по сравнению с предыдущим перекрёстком). Радио либо всегда говорит правду, либо всегда лжёт (но Буратино не знает, лжёт оно или нет). Сможет ли Буратино точно узнать, где закопан клад, если план города имеет вид: а)<img src="/storage/problem-media/109432/problem_109432_img_2.gif">, б)<img src="/storage/problem-media/109432/problem_109432_img_3.gif">? (Перекрёстки отмечены точками.)

Кощей Бессмертный похитил у царя трёх дочерей. Отправился Иван-царевич их выручать. Приходит он к Кощею, а тот ему и говорит: "Завтра поутру увидишь пять заколдованных девушек. Три из них – царёвы дочери, а ещё две – мои. Для тебя они будут неотличимы, а сами друг дружку различать смогут. Я подойду к одной из них и стану у неё спрашивать про каждую из пятерых: "Это царевна?". Она может отвечать и правду, и неправду, но ей дозволено назвать царевнами ровно двоих (себя тоже можно называть). Потом я так же опрошу каждую из остальных девушек, и они тоже должны будут назвать царевнами ровно двоих. Если после этого угадаешь, кто из них и вправду царевны, отпущу тебя восвояси невредимым. А если ещё и догадаешься, которая царевна старшая, которая средняя, а которая младшая, то и их...

Нарисуйте, как из данных трёх фигурок, использовав каждую ровно один раз, сложить фигуру, имеющую ось симметрии. <img src="/storage/problem-media/109426/problem_109426_img_2.gif">

Петя закрасил одну клетку прямоугольника. Саша может закрашивать другие клетки этого прямоугольника по следующему правилу: можно красить любую клетку, у которой нечётное число закрашенных соседей (по стороне). Сможет ли Саша закрасить все клетки прямоугольника (независимо от того, какую клетку выбрал Петя), если размеры прямоугольника а) 8×9 клеток? б) 8×10 клеток?

Дед звал внука к себе в деревню:

  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.

  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.

 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.

Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

Вадик написал название своего родного города и все его циклические сдвиги (перестановки по кругу), получив таблицу 1. Затем, упорядочив эти ''слова'' по алфавиту, он составил таблицу 2 и выписал её последний столбец:<tt>ВКСАМО</tt>. Саша сделал то же самое с названием своего родного города и получил ''слово'' <tt>МТТЛАРАЕКИС</tt>. Что это за город, если его название начинается с буквы <tt>С</tt>?

<img src="/storage/problem-media/103897/problem_103897_img_2.gif">

В вершинах куба<i>ABCDEFGH</i>расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: <i>A</i> и <i>G</i>, <i>B</i> и <i>H</i>, <i>C</i> и <i>E</i>, <i>D</i> и <i>F</i>.)

<img src="/storage/problem-media/103857/problem_103857_img_2.gif">

В одной из вершин куба<i>ABCDEFGH</i>сидит заяц, но охотникам он не виден. Три охотника стреляют залпом, при этом они могут ''поразить'' любые три вершины куба. Если они не попадают в зайца, то до следующего залпа заяц перебегает в одну из трёх соседних (по ребру) вершин куба. Укажите, как стрелять охотникам, чтобы обязательно попасть в зайца за четыре залпа. (В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)

<img src="/storage/problem-media/103852/problem_103852_img_2.gif">

Квадрат разбили на 100 прямоугольников девятью вертикальными и девятью горизонтальными прямыми (параллельными его сторонам). Среди этих прямоугольников оказалось ровно 9 квадратов. Докажите, что два из этих квадратов имеют одинаковый размер.

Нарисуйте на клетчатой бумаге треугольник с вершинами в углах клеток, две медианы которого перпендикулярны. (Медиана соединяет вершину треугольника с серединой противоположной стороны.)

Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером <i>m×n</i> клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?

Внутри квадрата<i>ABCD</i>расположен квадрат<i>KMXY</i>. Докажите, что середины отрезков<i>AK</i>,<i>BM</i>,<i>CX</i>и<i>DY</i>также являются вершинами квадрата.

На острове Невезения с населением 96 человек правительство решило провести пять реформ. Каждой реформой недовольна ровно половина всех граждан. Гражданин выходит на митинг, если он недоволен более чем половиной всех реформ. Какое максимальное число людей правительство может ожидать на митинге?

У Васи есть трафареты и цветные карандаши. Вася каждым ходом может приложить трафарет к бумаге и закрасить выбранным цветом всю видимую через трафарет область. Например, используя трафарет с двумя отверстиями, как на рисунке слева, Вася может раскрасить фигурку в центре за 3 хода в 3 цвета. Придумайте для Васи такой трафарет с двумя отверстиями, пользуясь которым он сможет за 5 ходов раскрасить фигуру в форме яблока (на рисунке справа) в 5 цветов так, чтобы каждая треугольная клетка была покрашена ровно одним цветом. Трафарет можно поворачивать и переворачивать. <img src="/storage/problem-media/67393/problem_67393_img_2.png">

В лесном пункте обмена можно обменять &bullet; апельсин — на две груши, &bullet; яблоко и грушу — на апельсин, &bullet; апельсин и грушу — на яблоко. По случаю праздника в пункте устроили акцию: за каждый обмен в подарок выдают коллекционный фантик. У лисы есть 30 яблок, 30 груш и 30 апельсинов. Какое максимальное количество фантиков она может получить?

У Пети было 18 одинаковых по внешнему виду монет – две по 1 г, две по 2 г, две по 3 г, ..., две по 9 г. Он разложил их на подносе по кругу, как показано на рисунке. Потом поднос как-то повернули, и теперь непонятно, где какая монета. Как за два взвешивания на чашечных весах без гирь это определить?<img src="/storage/problem-media/67387/problem_67387_img_2.png">

Карлсон ест варенье вдвое быстрее, чем Малыш, а торт он ест втрое быстрее, чем Малыш. Однажды они съели банку варенья и торт. Карлсон начал с торта, а Малыш с варенья. Покончив с тортом, Карлсон помог Малышу доесть варенье, и на всё это у них ушло два часа. В другой раз они съели такую же банку варенья и такой же торт, но Малыш ел торт, а Карлсон начал с варенья. Съев его, Карлсон помог Малышу доесть торт. За какое время они управились на этот раз?

Разрежьте первый параллелограмм на три части и сложите из них второй.<img src="/storage/problem-media/67287/problem_67287_img_2.png">

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка