Олимпиадные задачи из источника «1981 год» - сложность 2-4 с решениями

<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.

Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.

Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:

  а)  <i>N</i> = 64,

  б)  <i>N</i> = 55,

  в)  <i>N</i> = 100.

Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.

<i>M</i> – множество точек на плоскости. Точка <i>O</i> называется "почти центром симметрии" множества <i>M</i>, если из <i>M</i> можно выбросить одну точку так, что для оставшегося множества <i>O</i> является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

Натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> таковы, что каждое не превышает своего номера  (<i>a<sub>k</sub> ≤ k</i>)  и сумма всех чисел – чётное число. Доказать, что одна из сумм  <i>a</i><sub>1</sub> ± <i>a</i><sub>2</sub> ± ... ± <i>a<sub>n</sub></i>  равна нулю.

Дано число<i>x</i>, большее 1. Обязательно ли имеет место равенство<div align="CENTER"> [$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]? </div>

а) Существует ли последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и  <i>a<sub>n</sub> ≤ n</i><sup>10</sup>  при любом <i>n</i>? б) Тот же вопрос, если  <i>a<sub>n</sub> ≤ n</i><img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/79370/problem_79370_img_2.gif">  при любом <i>n</i>.

Два подмножества множества натуральных чисел называют конгруэнтными, если одно получается из другого сдвигом на целое число.<span class="prim">(Например, множества чётных и нечётных чисел конгруэнтны.)</span>Можно ли разбить множество натуральных чисел на бесконечное число<nobr>(не пересекающих</nobr>друг друга) бесконечных конгруэнтных подмножеств?

Световое табло состоит из нескольких ламп, каждая из которых может находиться в двух состояниях (гореть или не гореть). На пульте несколько кнопок, при нажатии каждой из которых одновременно меняется состояние некоторого набора ламп (для каждой кнопки – своего). Вначале лампы не горят.

  а) Докажите, что число различных узоров, которые можно получить на табло, – степень двойки.

  б) Сколько различных узоров можно получить на табло, состоящем из <i>mn</i> лампочек, расположенных в форме прямоугольника размером <i>m</i>×<i>n</i>, если кнопками можно переключить как любой горизонтальный, так и любой вертикальный ряд ламп?

2<i>m</i>-значное число назовём справедливым, если его чётные разряды содержат столько же чётных цифр, сколько и нечётные. Докажите, что в любом (2<i>m</i>+1)-значном числе можно вычеркнуть одну из цифр так, чтобы полученное 2<i>m</i>-значное число было справедливым. Пример для числа 12345 показан на рисунке. <div align="center"><img src="/storage/problem-media/73628/problem_73628_img_2.gif"></div>

Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

Четырехугольник <i>ABCD</i>, диагонали которого взаимно перпендикулярны, вписан в окружность с центром <i>O</i>.

Докажите, что ломаная <i>AOC</i> делит его на две равновеликие части.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка