Олимпиадные задачи из источника «выпуск 11»

<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.

Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.

Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:

  а)  <i>N</i> = 64,

  б)  <i>N</i> = 55,

  в)  <i>N</i> = 100.

Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.

<i>M</i> – множество точек на плоскости. Точка <i>O</i> называется "почти центром симметрии" множества <i>M</i>, если из <i>M</i> можно выбросить одну точку так, что для оставшегося множества <i>O</i> является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

Четырехугольник <i>ABCD</i>, диагонали которого взаимно перпендикулярны, вписан в окружность с центром <i>O</i>.

Докажите, что ломаная <i>AOC</i> делит его на две равновеликие части.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка