Олимпиадные задачи из источника «выпуск 11»
выпуск 11
Назад<i>N</i> друзей одновременно узнали <i>N</i> новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.
Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.
Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:
а) <i>N</i> = 64,
б) <i>N</i> = 55,
в) <i>N</i> = 100.
Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.
<i>M</i> – множество точек на плоскости. Точка <i>O</i> называется "почти центром симметрии" множества <i>M</i>, если из <i>M</i> можно выбросить одну точку так, что для оставшегося множества <i>O</i> является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?
Четырехугольник <i>ABCD</i>, диагонали которого взаимно перпендикулярны, вписан в окружность с центром <i>O</i>.
Докажите, что ломаная <i>AOC</i> делит его на две равновеликие части.