Олимпиадные задачи из источника «1973 год» для 11 класса - сложность 2-3 с решениями

У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.

На плоскости даны две точки <i>A</i> и <i>B</i>. Пусть <i>C</i> – некоторая точка плоскости, равноудалённая от точек <i>A</i> и <i>B</i>. Построим последовательность точек

<i>C</i><sub>1</sub> = <i>C, C</i><sub>2</sub>, <i>C</i><sub>3</sub>, ...,  где <i>C</i><sub><i>n</i>+1</sub> – центр описанной окружности треугольника <i>ABC<sub>n</sub></i>. При каком положении точки <i>C</i>

  а) точка <i>C<sub>n</sub></i> попадёт в середину отрезка <i>AB</i> (при этом <i>C</i><sub><i>n</i>+1</sub> и дальнейшие члены последова...

Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

В пространстве заданы четыре точки, не лежащие в одной плоскости.

Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?

Известно, что разность между наибольшим и наименьшим из чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x</i><sub>9</sub>, <i>x</i><sub>10</sub> равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел <i>x</i><sub>1</sub>,  ½ (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>),  &frac13; (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i><sub>3</sub>),  ...,  <sup>1</sup>/<sub>10</sub> (<i>x</i><sub>1<...

Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа <i>n</i>, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на <i>n</i>.

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что

  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;

  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".

Из последовательности  <i>a</i>,  <i>a + d,  a</i> + 2<i>d,  a</i> + 3<i>d</i>, ...,  являющейся бесконечной арифметической прогрессией, где <i>d</i> не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение <sup><i>a</i></sup>/<sub><i>d</i></sub>  рационально. Докажите это.

а) Докажите, что   <img align="absmiddle" src="/storage/problem-media/73734/problem_73734_img_2.gif">   (сумма берётся по всем целым <i>i</i>, 0 ≤ <i>i ≤ <sup>n</sup></i>/<sub>2</sub>). б) Докажите, что если <i>p</i> и <i>q</i> – различные числа и  <i>p + q</i> = 1,  то <div align="center"><img src="/storage/problem-media/73734/problem_73734_img_3.gif"></div>

Докажите, что для любого натурального числа <i>n</i>   <img align="absmiddle" src="/storage/problem-media/73719/problem_73719_img_2.gif">

Докажите, что если

  а) <i>a, b</i> и <i>c</i> – положительные числа, то   <img align="absmiddle" src="/storage/problem-media/73717/problem_73717_img_2.gif">   б) <i>a, b, c</i> и <i>d</i> – положительные числа,   <img align="absmiddle" src="/storage/problem-media/73717/problem_73717_img_3.gif">   в) <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> – положительные числа  (<i>n</i> > 1),  то   <img align="absmiddle" src="/storage/problem-media/73717/problem_73717_img_4.gif">

Какую наименьшую длину должен иметь кусок проволоки, чтобы из него можно было согнуть каркас куба с ребром 10 см?

(Проволока может проходить по одному ребру дважды, загибаться <nobr>на 90° и 180°, но ломать её нельзя.)</nobr>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка