Олимпиадные задачи из источника «1971 год» для 11 класса - сложность 2-3 с решениями

В клетки таблицы <i>m×n</i> вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Собралось <i>n</i> человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

В некотором множестве введена<nobr>операция <font face="Symbol"></font>,</nobr>которая по каждым двум элементам<i>a</i><nobr>и <i>b</i></nobr>этого множества вычисляет некоторый элемент<i>a</i><font face="Symbol"></font><i>b</i>этого множества. Известно, что:<nobr>1°. Для любых трех элементов <i>a</i>, <i>b</i> и <i>c</i></nobr> <nobr>          <i>a</i><font face="Symbol"></font>(<i>b</i><font face="Symbol"></font><i>c</i>) = <i>b</i><font face="Symbol">*</font>(<i>c</i><font face="Symbo...

Исследуйте, сколько решений имеет система уравнений

    <i>x</i>² + <i>y</i>² + <i>xy = a</i>,

    <i>x</i>² – <i>y</i>² = <i>b</i>,

где <i>а</i> и <i>b</i> – некоторые данные действительные числа.

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.

Докажите это.

Если<nobr><i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < <i>x</i><sub>3</sub> < ... < <i>x</i><sub><i>n</i></sub> —</nobr>натуральные числа, то сумма<nobr><i>n</i> – 1</nobr>дробей,<nobr><i>k</i>-я из</nobr>которых, где<nobr><i>k</i> < <i>n</i>,</nobr>равна отношению квадратного корня из разности<nobr><i>x</i><sub><i>k</i>+1</sub> - <i>x</i><sub><i>k</i></sub></nobr>к числу<i>x</i><sub><i>k</i>+1</sub>, меньше суммы чисел 1,<sup>1</sup>/<sub&g...

Какому условию должны удовлетворять коэффициенты <i>a, b, c</i> уравнения  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>,  чтобы три его корня составляли арифметическую прогрессию?

Многочлен <i>p</i> и число <i>a</i> таковы, что для любого числа <i>x</i> верно равенство  <i>p</i>(<i>x</i>) = <i>p</i>(<i>a – x</i>).

Докажите, что <i>p</i>(<i>x</i>) можно представить в виде многочлена от  (<i>x</i> – <sup><i>a</i></sup>/<sub>2</sub>)².

Число 76 обладает таким любопытным свойством: последние две цифры числа  76² = 5776  – это снова 76.

  а) Есть ли ещё такие двузначные числа?

  б) Найдите все такие трёхзначные числа <i>A</i>, что последние три цифры числа <i>A</i>² составляют число <i>А</i>.

  в) Существует ли такая бесконечная последовательность цифр <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., что для любого натурального <i>n</i> квадрат числа <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>2</sub><i>a</i><sub>1&lt...

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.

б) Докажите аналогичное утверждение для любого описанного многоугольника.

В вершинах правильного 12-угольника расставлены числа 1 и –1 так, что во всех вершинах, кроме одной, стоят единицы. Разрешается изменять знак в любых <i>k</i> подряд идущих вершинах. Можно ли такими операциями добиться того, чтобы единственное число –1 сдвинулось в соседнюю с исходной вершину, если   а)  <i>k</i> = 3;   б)  <i>k</i> = 4;   в)  <i>k</i> = 6.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка