Олимпиадные задачи из источника «глава 23. Делимость, инварианты, раскраски» - сложность 2 с решениями

Докажите, что если вершины выпуклого <i>n</i>-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  <i>n</i> ≤ 4.

На клетчатой бумаге даны произвольные <i>n</i>клеток. Докажите, что из них можно выбрать не менее<i>n</i>/4 клеток, не имеющих общих точек.

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

В каждой клетке доски 5×5 клеток сидит жук. В некоторый момент все жуки переползают на соседние (по горизонтали или вертикали) клетки. Обязательно ли при этом останется пустая клетка?

Дана шахматная доска. Разрешается перекрашивать другой цвет сразу все клетки, расположенные внутри любого квадрата 2×2.

Может ли при этом на доске остаться ровно одна чёрная клетка?

Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.

Может ли при этом получиться доска, у которой ровно одна чёрная клетка?

На плоскости лежат три шайбы <i>A, B</i> и <i>C</i>. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая <i>l</i> пересекает её ровно в 1985 точках.

Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:

  а) (2<i>n</i>+1)-угольника;  б) 2<i>n</i>-угольника?

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка