Олимпиадные задачи из источника «глава 19. Гомотетия и поворотная гомотетия» для 11 класса - сложность 4-5 с решениями
глава 19. Гомотетия и поворотная гомотетия
НазадВыпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
Дана полуокружность с диаметром<i>AB</i>. Для каждой точки <i>X</i>этой полуокружности на луче<i>XA</i>откладывается точка <i>Y</i>так, что<i>XY</i>=<i>kXB</i>. Найдите ГМТ <i>Y</i>.
Докажите, что любой выпуклый многоугольник $\Phi$содержит два непересекающихся многоугольника $\Phi_{1}^{}$и $\Phi_{2}^{}$, подобных $\Phi$с коэффициентом 1/2.