Олимпиадные задачи из источника «глава 19. Гомотетия и поворотная гомотетия» для 1-8 класса - сложность 3 с решениями

Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки <i>A</i> и <i>B</i>.

Докажите, что существует такая точка <i>P</i>, что в любой момент времени  <i>AP</i> : <i>BP = k</i>,  где <i>k</i> – отношение скоростей.

На окружности фиксированы точки <i>A</i> и <i>B</i>, а точка <i>C</i> движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников <i>ABC</i>.

Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка