Олимпиадные задачи из источника «Иванов С.В., Математический кружок» для 9-10 класса - сложность 1-2 с решениями

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.

Может ли сумма получившихся 14 чисел оказаться равной 0?

Через <i>n</i>!! обозначается произведение  <i>n</i>(<i>n</i> – 2)(<i>n</i> – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.

Докажите, что  1985!! + 1986!!  делится на 1987.

На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).

Докажите, что через 1985 секунд они не могут вернуться в исходное положение.

Каждые две из 13 ЭВМ соединены своим проводом.

Можно ли раскрасить каждый из этих проводов в один из 12 цветов так, чтобы из каждой ЭВМ выходило 12 проводов разного цвета?

2<sup><i>n</i></sup> = 10<i>a + b</i>.  Доказать, что если  <i>n</i> > 3,  то <i>ab</i> делится на 6.  (<i>n, a</i> и <i>b</i> – целые числа,  <i>b</i> < 10.)

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.

Могут ли они вращаться?

На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.

Докажите, что множество простых чисел вида  <i>p</i> = 6<i>k</i> + 5  бесконечно.

Докажите, что множество простых чисел вида  <i>p</i> = 4<i>k</i> + 3  бесконечно.

Докажите справедливость формулы   <img align="absmiddle" src="/storage/problem-media/60388/problem_60388_img_2.gif">

В стране <i>n</i> городов. Между каждыми двумя городами установлено воздушное сообщение одной из двух авиакомпаний. Докажите, из этих двух авиакомпаний хотя бы одна такова, что что из любого города можно попасть в любой другой рейсами только этой авиакомпании.

Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.

Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

Сколько решений в натуральных числах имеет уравнение   [<sup><i>x</i></sup>/<sub>10</sub>] = [<sup><i>x</i></sup>/<sub>11</sub>] + 1?

В центре куба<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_2.gif">сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики<img width="69" height="29" align="MIDDLE" border="0" src="/storage/problem-media/31367/problem_31367_img_3.gif">по одному разу.

а) В группе из четырёх человек, говорящих на разных языках, любые трое могут общаться (возможно, один переводит двум другим).

Доказать, что их можно разбить на пары, в каждой из которых имеется общий язык.

б) То же для группы из 100 человек.

в) То же для группы из 102 человек.

Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать да&quot; или нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса.

На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.

Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

Докажите, что для плоского графа справедливо неравенство  2<i>E</i> ≥ 3<i>F</i>.

Пусть связный плоский граф с <i>V</i> вершинами и <i>E</i> рёбрами разрезает плоскость на <i>F</i> кусков. Докажите формулу Эйлера:  <i>V – E + F</i> = 2.

Пусть натуральное число <i>n</i> таково, что  <i>n</i> + 1  делится на 24. Докажите, что сумма всех натуральных делителей <i>n</i> делится на 24.

а) <i>p,  p</i> + 10,  <i>p</i> + 14  – простые числа. Найдите <i>p</i>.б) <i>p</i>,  2<i>p</i> + 1,  4<i>p</i> + 1  – простые числа. Найдите <i>p</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка