Олимпиадные задачи из источника «Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел» для 6 класса

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

<b><em>Слоны, носороги, жирафы.</em></b>Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?

Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?

<b>4 монеты.</b>Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

а) У одного человека был подвал, освещавшийся тремя электрическими лампочками. Выключатели этих лампочек находились вне подвала, так что включив любой из выключателей, хозяин должен был спуститься в подвал, чтобы увидеть, какая именно лампочка зажглась. Однажды он придумал способ, как определить для каждого выключателя, какую именно лампочку он включает, сходив в подвал ровно один раз. Какой это способ? б) Сколько лампочек и выключателей можно идентифицировать друг с другом, если разрешается 2 раза спуститься в подвал?

Имеются весы с двумя чашами и по одной гире в 1 г, 3 г, 9 г, 27 г и 81 г. Как уравновесить груз в 61 г, положенный на чашу весов?

Представьте следующие рациональные числа в виде десятичных дробей:

  а) <sup>1</sup>/<sub>7</sub>;   б) <sup>2</sup>/<sub>7</sub>;   в) <sup>1</sup>/<sub>14</sub>;   г) <sup>1</sup>/<sub>17</sub>.

Пусть <i>m</i> и <i>n</i> – целые числа. Докажите, что  <i>mn</i>(<i>m + n</i>)  – чётное число.

Пусть α – действительное положительное число, <i>d</i> – натуральное.

Докажите, что количество натуральных чисел, не превосходящих α и делящихся на <i>d</i>, равно  [<sup>α</sup>/<sub><i>d</i></sub>].

Верно ли, что многочлен  <i>P</i>(<i>n</i>) = <i>n</i>² + <i>n</i> + 41  при всех <i>n</i> принимает только простые значения?

Докажите, что для любого натурального <i>n</i> найдутся <i>n</i> подряд идущих натуральных чисел, среди которых ровно одно простое.

Докажите, что существуют 1000 подряд идущих составных чисел.

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Когда натуральное число имеет нечётное количество делителей?

Сто человек сидят за круглым столом, причем более половины из них — мужчины. Докажите, что какие-то двое из мужчин сидят друг напротив друга.

Докажите, что среди москвичей есть два человека с равным числом волос, если известно, что у любого человека на голове менее одного миллиона волос.

Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.

Сколько существует четырёхзначных "симпатичных" чисел?

Номер автомашины состоит из трёх букв русского алфавита (используется 30 букв) и трёх цифр: сначала идет буква, затем три цифры, а затем еще две буквы. Сколько существует различных номеров автомашин?

Cколько существует различных семизначных телефонных номеров (cчитается, что номер начинаться с нуля не может)?

  а) В Стране Чудес есть три города <i>A</i>, <i>B</i> и <i>C</i>. Из города <i>A</i> в город <i>B</i> ведет 6 дорог, а из города <i>B</i> в город <i>C</i> – 4 дороги.

Сколькими cпособами можно проехать от <i>A</i> до <i>C</i>?

  б) В Стране Чудес построили еще один город <i>D</i> и несколько новых дорог – две из <i>A</i> в <i>D</i> и две из <i>D</i> в <i>C</i>.

Сколькими способами можно теперь добраться из города <i>A</i> в город <i>C</i>?

Докажите, что если <i>a</i> и <i>b</i> – целые числа и  <i>b</i> ≠ 0,  то существует единственная пара чисел <i>q</i> и <i>r</i>, для которой  <i>a = bq + r</i>,  0 ≤ <i>r < |b</i>|.

Доказать, что  <i>n</i>³ + 5<i>n</i>  делится на 6 при любом целом <i>n</i>.

Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).

б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка