Олимпиадные задачи по теме «Вероятность и статистика» для 1-8 класса - сложность 3 с решениями

Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число <i>Q</i> – показатель его умственных способностей (чем больше <i>Q</i>, тем больше способности). За <i>рейтинг</i> страны принимается среднее арифметическое значений <i>Q</i> всех жителей этой страны.

  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.

  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?

  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После э...

Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.

Игровой круг в телевикторине "Что? Где? Когда?" разбит на 13 одинаковых секторов. Секторы пронумерованы числами от 1 до 13. В каждом секторе в начале игры лежит конверт с вопросом. Игроки выбирают случайный сектор с помощью волчка со стрелкой. Если этот сектор уже выпадал прежде, то конверта в нём уже нет, и тогда играет следующий по часовой стрелке сектор. Если он тоже пуст, – следующий и т.д., пока не встретится непустой сектор. До перерыва игроки разыграли шесть секторов.

  а) Что более вероятно: что в числе разыгранных есть сектор №1 или что среди разыгранных есть сектор №8?

  б) Найдите вероятность того, что в результате оказались разыграны подряд шесть секторов с номерами от 1 до 6.

  Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось <i>n</i> человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.

  "Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно, буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".

  Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно  1 + ½ + &frac13; + ... + <sup>1</sup>/<sub><i>n</i></sub>.

Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64. На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями. <div align="center"><img src="/storage/problem-media/65786/problem_65786_img_2.gif"></div>

На соревнования приехали 10 теннисисток, из них 4 из России. По правилам для проведения первого тура теннисистки разбиваются на пары случайным образом. Найдите вероятность того, что в первом туре все россиянки будут играть только с россиянками.

Стрелок стреляет по трём мишеням до тех пор, пока не собьёт все. Вероятность попадания при одном выстреле равна <i>p</i>.

  a) Найдите вероятность того, что потребуется ровно 5 выстрелов.

  б) Найдите математическое ожидание числа выстрелов.

В выпуклом шестиугольнике независимо друг от друга выбраны две случайные диагонали.

Найдите вероятность того, что эти диагонали пересекаются внутри шестиугольника (внутри – то есть не в вершине).

В Анчурии готовятся президентские выборы, в которых хочет победить президент Мирафлорес. Ровно половина многочисленных избирателей поддерживает Мирафлореса, а другая половина – Дика Малони. Мирафлорес тоже является избирателем. По закону он имеет право поделить всех избирателей на два избирательных округа по своему усмотрению. В каждом из округов голосование проводится следующим образом: каждый избиратель отмечает на бюллетене имя своего кандидата; все бюллетени помещаются в урну. Затем из урны достаётся один случайный бюллетень, и тот, чьё имя на нём отмечено, победит в этом округе. Кандидат побеждает на выборах, только если победит в обоих округах. Если победитель не выявился, назначается следующий тур голосования по тем же правилам. Как Мирафлорес должен поделить избирателей, чтобы макс...

Найдите вероятность того, что орёл выпадет чётное число раз, в эксперименте, в котором:

  а) симметричную монету бросают <i>n</i> раз;

  б) <i>n</i> раз бросают монету, у которой вероятность выпадения орла при одном бросании равна <i>p</i>  (0 < <i>p</i> < 1).

Каждый день пёс Патрик сгрызает одну тапочку из имеющегося дома запаса. Строго с вероятностью 0,5 Патрик хочет сгрызть левую тапочку и с вероятностью 0,5 – правую. Если желаемой тапочки нет, Патрик расстраивается. Сколько пар одинаковых тапочек нужно купить, чтобы с вероятностью не меньше чем 0,8 Патрик не расстраивался целую неделю (7 дней)?

В Анчурии проходит единый государственный экзамен. Вероятность угадать верный ответ на каждый вопрос экзамена равна 0,25. В 2011 году, чтобы получить аттестат, нужно было ответить верно на три вопроса из 20. В 2012 году Управление школ Анчурии решило, что три вопроса это мало. Теперь нужно верно ответить на шесть вопросов из 40. Спрашивается, если ничего не знать, а просто угадывать ответы, в каком году вероятность получить анчурийский аттестат выше – в 2011 или в 2012?

Петя и ещё 9 человек играют в такую игру: каждый бросает игральную кость. Игрок получает приз, если он выбросил число очков, которое не удалось выбросить никому больше.

  а) Какова вероятность того, что Петя получит приз?

  б) Какова вероятность того, что хоть кто-то получит приз?

Из 27 игральных кубиков сложен куб.

  а) Найдите вероятность того, что на поверхности куба оказалось ровно 25 шестёрок.

  б) Найдите вероятность того, что на поверхности куба оказалась хотя бы одна единица.

  в) Найдите математическое ожидание числа шестёрок, смотрящих наружу.

  г) Найдите математическое ожидание суммы чисел, которые оказались на поверхности куба.

  д) Найдите математическое ожидание случайной величины: "Число различных цифр, оказавшихся на поверхности куба".

В автобусе <i>n</i> мест, и все билеты проданы <i>n</i> пассажирам. Первым в автобус заходит Рассеянный Учёный и, не посмотрев на билет, занимает первое попавшееся место. Далее пассажиры входят по одному. Если вошедший видит, что его место свободно, он занимает свое место. Если же место занято, то вошедший занимает первое попавшееся свободное место. Найдите вероятность того, что пассажир, вошедший последним, займет место согласно своему билету?

Можно ли:

  а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?

  б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?

Проведите следующий эксперимент 10 раз: подбросьте вначале монету 10 раз подряд и запишите количество выпавших орлов, затем подбросьте монету 9 раз подряд и также запишите количество выпавших орлов. Назовём эксперимент удачным, если в первом случае количество выпавших орлов больше, чем во втором. После проведения серии из 10 таких экспериментов запишите количество удачных и неудачных экспериментов. Собранную статистику оформите в виде таблицы.   а) Ваня бросает монету 3 раза, а Таня – два. Какова вероятность, что у Вани больше орлов, чем у Тани?

  б) Ваня бросает монету  <i>n</i> + 1  раз, а Таня – <i>n</i> раз. Какова вероятность, что у Вани больше орлов, чем у Тани?

Докажите, что 13-е число месяца с большей вероятностью приходится на пятницу, чем на другие дни недели. Предполагается, что мы живем по Григорианскому стилю.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.

Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка