Олимпиадные задачи по теме «Методы» для 5-6 класса - сложность 2 с решениями
Методы
Все категорииМожно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
В пять горшочков, стоящих в ряд, Кролик налил три килограмма мёда (не обязательно в каждый и не обязательно поровну). Винни-Пух может взять любые два горшочка, стоящие рядом. Какое наибольшее количество мёда сможет гарантированно съесть Винни-Пух?
Можно ли в записи 2013² – 2012² – ... – 2² – 1² некоторые минусы заменить на плюсы так, чтобы значение получившегося выражения стало равно 2013?
На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
Астролог считает, что 2013 год <i>счастливый</i>, потому что 2013 нацело делится на сумму 20 + 13.
Будет ли когда-нибудь два счастливых года подряд?
На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?
Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
а) за 5 или менее;
б) за 4 или менее;
в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>
Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.). <div align="center"><img src="/storage/problem-media/116959/problem_116959_img_2.gif"></div>Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?
На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час?
В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, <i>не обязательно положительное</i>. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)<div align="center"><img src="/storage/problem-media/116845/problem_116845_img_2.gif"></div>
Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?
На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?
На клетки шахматной доски положили рисовые зёрнышки. Количества зёрнышек на каждых двух клетках, имеющих общую сторону, отличались ровно
на 1. При этом на одной из клеток доски лежало три зёрнышка, а на другой – 17 зёрнышек. Петух склевал все зёрнышки с одной из главных диагоналей доски, а курица – с другой. Сколько зёрен досталось петуху и сколько курице?
Расставьте числа 1, 2, 3, ..., 9 в кружочках так, чтобы сумма чисел на каждой стороне треугольника равнялась 17. <div align="center"><img src="/storage/problem-media/116784/problem_116784_img_2.gif"></div>
На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?
Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?
Можно ли 100 гирь массами 1, 2, 3, ..., 99, 100 разложить на 10 кучек разной массы так, чтобы выполнялось условие: чем тяжелее кучка, тем меньше в ней гирь?
Пятизначное число называется <i>неразложимым</i>, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?
Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.
Какова могла быть длина верёвочки, если известно, что какие-то два из полученных кусков имели длины 9 метров и 4 метра?
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?
Вася написал верное утверждение:
"В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
"В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.
На каждом из двух рукавов реки за километр до их слияния стоит по пристани, а ещё одна пристань стоит в 2 километрах после слияния (см. рисунок). <div align="center"><img src="/storage/problem-media/116611/problem_116611_img_2.gif"></div>Лодка добралась от одной из пристаней до другой (неизвестно, какой) за 30 минут, от другой до третьей за 18 минут. За сколько минут она может добраться от третьей пристани до первой? (Скорость течения реки постоянна и одинакова во всех её частях. Собственная скорость лодки также постоянна.)
Замените в равенстве ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.