Олимпиадные задачи по теме «Методы» для 10-11 класса - сложность 4-5 с решениями

Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

Для натурального <i>n</i> обозначим  <i>S<sub>n</sub></i> = 1! + 2! + ... + <i>n</i>!.  Докажите, что при некотором <i>n</i> у числа <i>S<sub>n</sub></i> есть простой делитель, больший 10<sup>2012</sup>.

На координатной плоскости нарисовано <i>n</i> парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более  2(<i>n</i> – 1)  углов (то есть точек пересечения пары парабол).

Изначально на доске были написаны одночленs  1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>.  Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены  <i>S</i><sub>1</sub> = 1 + <i>x,  S</i><sub>2</sub> = 1 + <i>x + x</i>²,  <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>,  ...,  <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>.  Докажите...

У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось

100 кучек по одному камешку. Докажите, что

  а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;

  б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;

  в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.

а) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?

Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.

  а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?

  б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.

Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества  {1, 2, 3, ..., 2<i><sup>k</sup></i>},  а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.

Дан остроугольный треугольник <i>ABC</i>. Для произвольной прямой <i>l</i> обозначим через <i>l<sub>a</sub></i>, <i>l<sub>b</sub></i>, <i>l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно сторон треугольника, а через <i>I<sub>l</sub></i> – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек <i>I<sub>l</sub></i>.

Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Назовём компанию <i>k-неразбиваемой</i>, если при любом разбиении её на <i>k</i> групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку <i>красивой</i>, если в соседних с ней по стороне клетках стоит чётное число фишек.

Может ли ровно одна клетка доски быть красивой?

100 красных точек разделили синюю окружность на 100 дуг, длины которых являются всеми натуральными числами от 1 до 100 в произвольном порядке. Докажите, что существуют две перпендикулярные хорды с красными концами.

Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.

Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  <i>a</i> : (1 – <i>a</i>)  по весу, где  0 < <i>a</i> < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение <i>a</i>, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

Oснованием пирамиды служит выпуклый четырехугольник. Oбязательно ли существует сечение этой пирамиды, не пересекающее основание и являющееся вписанным четырехугольником?

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

Квадрат <i>ABCD</i> разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура <i>F</i> является объединением всех прямоугольников, имеющих общие точки с диагональю <i>AC</i>. Докажите, что <i>AC</i> делит площадь фигуры <i>F</i> пополам.

В каждой клетке таблицы 1000×1000 стоит ноль или единица. Докажите, что можно либо вычеркнуть 990 строк так, что каждом столбце будет хотя бы одна невычеркнутая единица, либо вычеркнуть 990 столбцов так, что в каждой строке будет хотя бы один невычеркнутый ноль.

За круглым столом заседают <i>N</i> рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?

(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка