Олимпиадные задачи по теме «Примеры и контрпримеры. Конструкции» для 11 класса - сложность 2-4 с решениями

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Куб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?

Дана бесконечная последовательность чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ...  Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что

<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ...  Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что  <i>a<sub>k</sub> = a<sub>k+T</sub></i>  при любом натуральном <i>k</i>?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.

  а) Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

  б) А если при этом дополнительно требуется, чтобы  <i>C</i>(<i>a + b</i>) > 1000?

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?

Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?

Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?

а) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?

После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина  <i>S</i><sub>1</sub> : <i>S</i>?

К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?

Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.

  а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?

  б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.

На собрание пришло <i>n</i> человек  (<i>n</i> > 1).  Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.

  а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.

  б) Покажите, что <i>n</i> может быть больше 4.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?

  А если богатырей

  б) десять?

  в) тридцать три?

  а) Есть кусок сыра. Разрешается выбрать любое положительное (возможно, нецелое) число  <i>a</i> ≠ 1,  и разрезать этот кусок в отношении  1 : <i>a</i>  по весу, затем разрезать в том же отношении любой из имеющихся кусков, и т. д. Можно ли действовать так, что после конечного числа разрезаний весь сыр удастся разложить на две кучки равного веса?

  б) Тот же вопрос, но выбирается положительное рациональное  <i>a</i> ≠ 1.

Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)

Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?

Из <i>N</i> прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из <i>N</i> частей можно было сложить квадрат, а из оставшихся <i>N</i> частей – прямоугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка