Олимпиадные задачи по теме «Индукция» - сложность 3 с решениями
Индукция
НазадСуществуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.
а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.
На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?
На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub> кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub> кг цемента соответственно, причём
<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...
а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
А если богатырей
б) десять?
в) тридцать три?
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
Обозначим через [<i>n</i>]! произведение 1·11·111·...·11...11 – всего <i>n</i> сомножителей, в последнем – <i>n</i> единиц.
Докажите, что [<i>n</i> + <i>m</i>]! делится на произведение [<i>n</i>]!·[<i>m</i>]!.
Докажите, что при <i>n</i> > 1 число 1<sup>1</sup> + 3³ + ... + (2<sup><i>n</i></sup> – 1)<sup>2<sup><i>n</i></sup> – 1</sup> делится на 2<i><sup>n</sup></i>, но не делится на 2<sup><i>n</i>+1</sup>.
Назовём натуральное число <i>хорошим</i>, если все его цифры ненулевые. Хорошее число назовём <i>особым</i>, если в нём хотя бы <i>k</i> разрядов и цифры идут в порядке строгого возрастания (слева направо). Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем <i>k</i> можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?
В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей). а) Одна запись стёрлась. Всегда ли можно однозначно восстановить её по остальным? б) Пусть стёрлись <i>k</i> записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем <i>k</i> всегда можно однозначно восстановить стёршиеся записи?
55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?
Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>) делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>) для любого целого <i>n</i>?
<img align="right" src="/storage/problem-media/115364/problem_115364_img_2.gif"> Назовём лестницей высоты <i>n</i> фигуру, состоящую из всех клеток квадрата <i>n</i>×<i>n</i>, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты <i>n</i> на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?
В каждой клетке квадрата 101<i>×</i>101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?
В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.
В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами?
а) Докажите, что при<i> n></i>4любой выпуклый<i> n </i>-угольник можно разрезать на<i> n </i>тупоугольных треугольников.
б) Докажите, что при любом<i> n </i>существует выпуклый<i> n </i>-угольник, который нельзя разрезать меньше, чем на<i> n </i>тупоугольных треугольников.
в) На какое наименьшее число тупоугольных треугольников можно разрезать прямоугольник?
Даны положительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>. Известно, что <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½. Докажите, что (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.