Олимпиадные задачи по теме «Алгебраические методы» для 9-10 класса - сложность 2-4 с решениями
Алгебраические методы
НазадКуб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Могут ли все корни уравнений <i>x</i>² – <i>px + q</i> = 0 и <i>x</i>² – (<i>p</i> + 1)<i>x + q</i> = 0 оказаться целыми числами, если:
а) <i>q</i> > 0;
б) <i>q</i> < 0?
Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.
В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>17</sub> всех экскурсий.
Про группу из пяти человек известно, что: Алеша на 1 год старше Алексеева,
Боря на 2 года старше Борисова,
Вася на 3 года старше Васильева,
Гриша на 4 года старше Григорьева,
а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?
На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?
Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?
Изначально на доске были написаны одночленs 1, <i>x, x</i>², ..., <i>x<sup>n</sup></i>. Договорившись заранее, <i>k</i> мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через <i>m</i> минут на доске были написаны, среди прочих, многочлены <i>S</i><sub>1</sub> = 1 + <i>x, S</i><sub>2</sub> = 1 + <i>x + x</i>², <i>S</i><sub>3</sub> = 1 + <i>x + x</i>² + <i>x</i><sup>3</sup>, ..., <i>S<sub>n</sub></i> = 1 + <i>x + x</i>² + ... + <i>x<sup>n</sup></i>. Докажите...
Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа <i>a</i>² – 2011<i>b</i>² и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
По кругу стоит 101 мудрец. Каждый из них либо считает, что Земля вращается вокруг Юпитера, либо считает, что Юпитер вращается вокруг Земли. Один раз в минуту все мудрецы одновременно оглашают свои мнения. Сразу после этого каждый мудрец, оба соседа которого думают иначе, чем он, меняет своё мнение, а остальные – не меняют. Докажите, что через некоторое время мнения перестанут меняться.
На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали <i>k</i> точек и построили выпуклый <i>k</i>-угольник с вершинами
в выбранных точках. При каком наибольшем <i>k</i> могло оказаться, что у этого многоугольника нет параллельных сторон?
Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство: <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>). Следует ли из этого, что <i>а = b = c</i>?
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось
100 кучек по одному камешку. Докажите, что
а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;
б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;
в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.
На плоскости нарисовали кривые <i>y</i> = cos <i>x</i> и <i>x</i> = 100 cos(100<i>y</i>) и отметили все точки их пересечения, координаты которых положительны. Пусть <i>a</i> – сумма абсцисс, а <i>b</i> – сумма ординат этих точек. Найдите <sup><i>a</i></sup>/<sub><i>b</i></sub>.
На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во <i>владения</i> этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен <i>f</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен <i>g</i>(<i>x</i>), корнями которого являются записанные в его тетради два числа. Если уравнение <i>f</i>(<i>x</i>) = <i>g</i>(<i>x</i>) имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?
На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?
На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?