Олимпиадные задачи по теме «Логика и теория множеств» для 1-7 класса
В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.
Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?
Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.
Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?
В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.
Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?
Некоторые жители <i>Острова Разноцветных Лягушек</i> говорят только правду, а остальные всегда лгут. Трое островитян сказали так:
Бре: На нашем острове нет синих лягушек.
Ке: Бре лгун. Он же сам синяя лягушка!
Кекс: Конечно, Бре лгун. Но он красная лягушка.
Водятся ли на этом острове синие лягушки?
Решите ребус: ЛЕТО + ЛЕС = 2011.
Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?
Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.
На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?
Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?
Иван, Петр и Сидор ели конфеты. Их фамилии – Иванов, Петров и Сидоров. Иванов съел на 2 конфеты меньше Ивана, Петров – на 2 конфеты меньше Петра, а Петр съел больше всех. У кого из них какая фамилия?
Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
Четверо детей сказали друг о друге так.
<i>Маша</i>: Задачу решили трое: Саша, Наташа и Гриша.
<i>Саша</i>: Задачу не решили трое: Маша, Наташа и Гриша.
<i>Наташа</i>: Маша и Саша солгали.
<i>Гриша</i>: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?
В равенстве ТИХО + ТИГР = СПИТ замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет).
Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников. Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит а) 13; б) 14 золотых слитков? Как ему это сделать?
Вася написал верное утверждение:
"В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
"В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.
Известно, что Шакал всегда лжёт, Лев говорит правду, Попугай просто повторяет последний услышанный ответ (а если его спросить первым, ответит как попало), а Жираф дает честный ответ, но на предыдущий заданный ему вопрос (а на первый вопрос отвечает как попало). Мудрый Ёжик в тумане наткнулся на Шакала, Льва, Попугая и Жирафа и решил выяснить, в каком порядке они стоят. Спросив всех по очереди "Ты Шакал?", он понял только лишь, где Жираф. Спросив всех в том же порядке: "Ты Жираф?", он смог ещё понять, где Шакал, но полной ясности так и не наступило. И лишь после того как на вопрос "Ты Попугай?" первый ответил "Да", Ежу, наконец, стало ясно, в каком порядке стояли животные. Так в каком же?
("Как попало" означает, что один из ответов "Д...