Олимпиадные задачи по теме «Теория множеств» для 6-8 класса
Теория множеств
НазадВ классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.
Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.
Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ... так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась <i>k</i> + 2013?
Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?
В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.
По данным опроса, проведенного в 7 "Е" классе, выяснилось, что 20% учеников, интересующихся математикой, интересуются еще и физикой, а 25% учеников, интересующихся физикой, интересуются также и математикой. И только Пете с Васей не интересен ни один из этих предметов. Сколько человек в 7 "Е", если известно, что их больше 20, но меньше 30?
Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел<i> a </i>и<i> b </i>(<i> a>b </i>) хотя бы одно из чисел<i> a+b </i>или<i> a-b </i>тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.
Каждый голосующий на выборах вносит в избирательный бюллетень фамилии<i> n </i>кандидатов. На избирательном участке находится<i> n+</i>1урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе(<i>n+</i>1)-го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Члены Государственной Думы образовали фракции так, что для любых двух фракций<i> A </i>и<i> B </i>(не обязательно различных)<i> <img src="/storage/problem-media/109909/problem_109909_img_2.gif"> </i>– тоже фракция (через<i> <img src="/storage/problem-media/109909/problem_109909_img_3.gif"> </i>обозначается множество всех членов Думы, не входящих в<i> C </i>). Докажите, что для любых двух фракций<i> A </i>и<i> B </i><i> A<img src="/storage/problem-media/109909/problem_109909_img_4.gif"> B </i>– также фракция.
На прямой выбрано 100 множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100, каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).
Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?
Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из2<i>k </i>элементов (<i> k </i>– фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из(<i>k+</i>1)<i><sup>2</sup> </i>элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.
В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.
В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?
В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется <i>важным</i>, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется <i>стратегическим</i>, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.
В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные знают все буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников – слово "рот", а остальных – слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали своё слово верно?
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через <i>A</i>) записана единица. Через кубик <i>A</i> проходит три <i>слоя</i>, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)