Олимпиадные задачи по теме «Стереометрия» для 10 класса - сложность 1-2 с решениями

Точка <i>А</i> лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), <i>В</i> – наиболее удалённая от неё точка на окружности нижнего основания, <i>С</i> – произвольная точка окружности нижнего основания. Найдите <i>АВ</i>, если  <i>АС</i> = 12,  <i>BC</i> = 5. <div align="center"><img src="/storage/problem-media/116998/problem_116998_img_2.gif"></div>

Дан тетраэдр <i>ABCD</i>. Точка <i>X</i> выбрана вне тетраэдра так, что отрезок <i>XD</i> пересекает грань <i>ABC</i> во внутренней точке. Обозначим через <i>A', B', C'</i> проекции точки <i>D</i> на плоскости <i>XBC, XCA, XAB</i> соответственно. Докажите, что  <i>A'B' + B'C' + C'A' < DA + DB + DC</i>.

Какое наибольшее количество треугольных граней может иметь пятигранник?

Найдите наибольшее значение выражения  <i>x</i>² + <i>y</i>²,  если  |<i>x – y</i>| ≤ 2  и  |3<i>x + y</i>| ≤ 6.

В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:

   а) равные многоугольники;

   б) правильные многоугольники?

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.

Докажите, что многогранник имеет хотя бы три равных ребра.

Докажите, что в правильной треугольной пирамиде двугранный угол между боковыми гранями больше чем 60°.

Вокруг цилиндрической колонны высотой 20 метров и диаметра 3 метра обвита узкая лента, которая поднимается от подножия до вершины семью полными витками. Какова длина ленты?

Через вершины основания четырёхугольной пирамиды <i>SABCD</i> проведены прямые, параллельные противоположным боковым рёбрам (через вершину <i>A</i> – параллельно <i>SC</i>, и так далее). Эти четыре прямые пересеклись в одной точке. Докажите, что четырёхугольник <i>ABCD</i> – параллелограмм.

На стороне <i>AC</i> треугольника <i>ABC</i> отметили произвольную точку <i>D</i>. Точки <i>E</i> и <i>F</i> симметричны точке <i>D</i> относительно биссектрис углов <i>A</i> и <i>C</i> соответственно. Докажите, что середина отрезка <i>EF</i> лежит на прямой <i>A</i><sub>0</sub><i>C</i><sub>0</sub>, где <i>A</i><sub>0</sub> и <i>C</i><sub>0</sub> – точки касания вписанной окружности треугольника <i>ABC</i> со сторонами <i>BC</i> и <i>AB</i> соответственно.

В прямоугольном параллелепипеде <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> четыре числа – длины рёбер и диагонали <i>AC</i><sub>1</sub> – образуют арифметическую прогрессию с положительной разностью <i>d</i>, причём <i>AA</i><sub>1</sub> < <i>AD</i> < <i>AB</i>. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса <i>R</i> расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней <i>ABB</i><sub>1</sub><i>A</i><sub>1</sub>, <i>ADD</i&g...

В прямоугольном параллелепипеде <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> четыре числа – длины рёбер и диагонали <i>AC</i><sub>1</sub> – образуют арифметическую прогрессию с положительной разностью <i>d</i>, причём <i>AD</i> < <i>AB</i> < <i>AA</i><sub>1</sub>. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса <i>R</i> расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней <i>ABB</i><sub>1</sub><i>A</i><sub>1</sub>, <i>ADD</i&g...

В прямоугольном параллелепипеде <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> четыре числа – длины рёбер и диагонали <i>AC</i><sub>1</sub> – образуют арифметическую прогрессию с положительной разностью <i>d</i>, причём <i>AB</i> < <i>AA</i><sub>1</sub> < <i>AD</i>. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса <i>R</i> расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней <i>ABB</i><sub>1</sub><i>A</i><sub>1</sub>, <i>ADD</i&g...

В прямоугольном параллелепипеде <i>ABCDA</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> четыре числа – длины рёбер и диагонали <i>AC</i><sub>1</sub> – образуют арифметическую прогрессию с положительной разностью <i>d</i>, причём <i>AA</i><sub>1</sub> < <i>AB</i> < <i>BC</i>. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса <i>R</i> расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней <i>ABB</i><sub>1</sub><i>A</i><sub>1</sub>, <i>ADD</i&gt...

Тело в форме тетраэдра <i>ABCD</i> с одинаковыми рёбрами поставлено гранью <i>ABC</i> на плоскость. Точка <i>F</i> лежит на ребре <i>CD</i> и  2<i>DF = FC</i>,  точка <i>S</i> лежит на прямой <i>AB,  AB</i> = 3<i>BS</i>  и точка <i>B</i> лежит между <i>A</i> и <i>S</i>. В точку <i>S</i> сажают муравья. Как должен муравей ползти в точку <i>F</i>, чтобы пройденный им путь был минимальным?

Тело в форме тетраэдра <i>ABCD</i> с одинаковыми рёбрами поставлено гранью <i>ABC</i> на плоскость. Точка <i>F</i> – середина ребра <i>CD</i>, точка <i>S</i> лежит на прямой <i>AB,  AB</i> = 2<i>BS</i>,  точка <i>B</i> лежит между <i>A</i> и <i>S</i>. В точку <i>S</i> сажают муравья. Как должен муравей ползти в точку <i>F</i>, чтобы пройденный им путь был минимальным?

Тело в форме тетраэдра <i>ABCD</i> с одинаковыми рёбрами поставлено гранью <i>ABC</i> на плоскость. Точка <i>F</i> – середина ребра <i>CD</i>, точка <i>S</i> лежит на прямой <i>AB</i>,  2<i>AB = BS</i>  и точка <i>B</i> лежит между <i>A</i> и <i>S</i>. В точку <i>S</i> сажают муравья. Как должен муравей ползти в точку <i>F</i>, чтобы пройденный им путь был минимальным?

Тело в форме тетраэдра <i>ABCD</i> с одинаковыми рёбрами поставлено гранью <i>ABC</i> на плоскость. Точка <i>F</i> – середина ребра <i>CD</i>, точка <i>S</i> лежит на прямой <i>AB,  S ≠ A,  AB = BS</i>.  В точку <i>S</i> сажают муравья. Как должен муравей ползти в точку <i>F</i>, чтобы пройденный им путь был минимальным?

В правильной треугольной пирамиде <i>ABCD</i> сторона основания <i>ABC</i> равна 4, угол между плоскостью основания <i>ABC</i> и боковой гранью равен <img align="middle" src="/storage/problem-media/116519/problem_116519_img_2.gif">. Точки <i>K</i>, <i>M</i>, <i>N</i> – середины отрезков <i>AB</i>, <i>DK</i>, <i>AC</i> соответственно, точка <i>E</i> лежит на отрезке <i>CM</i> и 5<i>ME = CE</i>. Через точку <i>E</i> проходит плоскость П перпендикулярно отрезку <i>CM</i>. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки <i...

В правильной треугольной пирамиде <i>ABCD</i> длина бокового ребра равна 12, а угол между основанием <i>ABC</i> и боковой гранью равен <img align="middle" src="/storage/problem-media/116518/problem_116518_img_2.gif">. Точки <i>K</i>, <i>M</i>, <i>N</i> – середины рёбер <i>AB</i>, <i>CD</i>, <i>AC</i> соответственно. Точка <i>E</i> лежит на отрезке <i>KM</i> и 2<i>ME</i> = <i>KE</i>. Через точку <i>E</i> проходит плоскость П перпендикулярно отрезку <i>KM</i>. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки <i>N</i...

Сторона основания <i>ABCD</i> правильной пирамиды <i>SABCD</i> равна <img align="middle" src="/storage/problem-media/116516/problem_116516_img_2.gif">, угол между боковым ребром пирамиды и плоскостью основания равен <img align="middle" src="/storage/problem-media/116516/problem_116516_img_3.gif">. Точка <i>M</i> – середина ребра <i>SD</i>, точка <i>K</i> – середина ребра <i>AD</i>. Найдите:1) объём пирамиды <i>CMSK</i>;2) угол между прямыми <i>CM</i> и <i>SK</i>;3) расстояние между прямыми <i>CM</i> и <i>SK</i>.

В пространстве заданы три луча: <i>DA</i>, <i>DB</i> и <i>DC</i>, имеющие общее начало <i>D</i>, причём ∠<i>ADB</i> = ∠<i>ADC</i> = ∠<i>BDC</i> = 90°. Сфера пересекает луч <i>DA</i> в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>, луч <i>DB</i> – в точках <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub>, луч <i>DC</i> – в точках <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub>. Найдите площадь треугольника <i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</s...

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно <i>a</i>, а противоположное ребро равно <i>b</i>. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка