Олимпиадные задачи по теме «Комбинаторная геометрия» для 11 класса - сложность 4 с решениями
Комбинаторная геометрия
Назада) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?
Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
Квадрат <i>ABCD</i> разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура <i>F</i> является объединением всех прямоугольников, имеющих общие точки с диагональю <i>AC</i>. Докажите, что <i>AC</i> делит площадь фигуры <i>F</i> пополам.
На плоскости отметили 4<i>n</i> точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых <i>n</i> + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7<i>n</i> отрезков.
В НИИЧАВО работают несколько научных сотрудников. В течение 8-часового рабочего дня сотрудники ходили в буфет, возможно по нескольку раз. Известно, что для каждых двух сотрудников суммарное время, в течение которого в буфете находился ровно один из них, оказалось не менее <i>x</i> часов (<i>x</i> > 4). Какое наибольшее количество научных сотрудников могло работать в этот день в НИИЧАВО (в зависимости от <i>x</i>)?
У выпуклого многогранника одна вершина <i>A</i> имеет степень 5, а все остальные – степень 3. Назовём раскраску рёбер многогранника в синий, красный и лиловый цвета <i>хорошей</i>, если для каждой вершины степени 3 все выходящие из нее ребра покрашены в разные цвета. Оказалось, что количество хороших раскрасок не делится на 5. Докажите, что в одной из хороших раскрасок какие-то три последовательных ребра, выходящие из <i> A </i>, покрашены в один цвет.
В стране есть <i>N</i> городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого <i>k</i> (2 ≤ <i>k ≤ N</i>) при любом выборе <i>k</i> городов количество авиалиний между этими городами не будет превосходить 2<i>k</i> – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Натуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
б) При каких <i>N</i> такая раскраска возможна?
Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.
Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?
На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.
На плоскости даны<i> n></i>1точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
Каждая клетка клетчатой плоскости раскрашена в один из<i>n</i>² цветов так, что в каждом квадрате из<i>n×</i>клеток встречаются все цвета. Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в<i>n</i>цветов.
На плоскости дано бесконечное множество точек<i> S </i>, при этом в любом квадрате1×1лежит конечное число точек из множества<i> S </i>. Докажите, что найдутся две разные точки<i> A </i>и<i> B </i>из<i> S </i>такие, что для любой другой точки<i> X </i>из<i> S </i>выполняются неравенства: <center><i>
|XA|,|XB|<img src="/storage/problem-media/110060/problem_110060_img_2.gif"> </i>0<i>,</i>999<i>|AB|. </i></center>
Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.
Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется <i>положительным</i>, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и <i>отрицательным</i> в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.
На прямоугольном столе разложено несколько одинаковых квадратных листов бумаги так, что их стороны параллельны краям стола (листы могут перекрываться). Докажите, что можно воткнуть несколько булавок таким образом, что каждый лист будет прикреплен к столу ровно одной булавкой.
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых<i> k+</i>1квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на2<i>k-</i>1непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
В клетчатом прямоугольнике 49×69 отмечены все50<i>· </i>70вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?
Докажите, что не существует конечного множества, содержащего более2<i>N </i>(<i> N></i>3) попарно неколлинеарных векторов на плоскости, обладающего следующими двумя свойствами.<ol type="1"> <li>Для любых <i> N </i> векторов этого множества найдется еще такой <i> N-</i>1 вектор из этого множества, что сумма всех 2<i>N-</i>1 векторов равна нулю;
</li><li>для любых <i> N </i> векторов этого множества найдутся еще такие <i> N </i> векторов из этого множества, что сумма всех 2<i>N </i> векторов равна нулю. </li></ol>