Назад

Олимпиадная задача по планиметрии: разрезание выпуклой фигуры из дуг окружностей

Задача

Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.

Решение

Первое решение. Разрезав криволинейный шестиугольник с дугами в качестве сторон, можно сложить криволинейный "квадрат" и линзу (рис.).

Второе решение. Рассмотрим трапецию ABCD , у которой AB=BC=CD=1и площадь равна площади правильного треугольника со стороной 1. Известно, что из любого многоугольника, разрезав его на подходящие части, можно сложить любой другой многоугольник той же площади; разрежем трапецию на несколько многоугольников и сложим из них правильный треугольник. Проведем теперь дугу окружности через вершины трапеции. Отрезав от сегмента, ограниченного дугой и отрезком AD , три маленьких сегмента по сторонам трапеции AB, BC, CD (рис.) и приставив их к сторонам правильного треугольника, получим выпуклую фигуру F (рис.), ограниченную тремя дугами окружностей. Таким образом, фигуру, составленную из двух таких сегментов, симметричных относительно общей хорды (рис.), можно разрезать на части и сложить из них две фигуры, равных F .

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет