Олимпиадные задачи по теме «Аффинная геометрия» для 5-8 класса - сложность 1-4 с решениями

На стороне <i>BC</i> и на продолжении стороны <i>AB</i> за вершину <i>B</i> треугольника <i>ABC</i> расположены точки <i>M</i> и <i>K</i> соответственно, причём  <i>BM</i> : <i>MC</i> = 4 : 5  и  <i>BK</i> : <i>AB</i> = 1 : 5.  Прямая <i>KM</i> пересекает сторону <i>AC</i> в точке <i>N</i>. Найдите отношение  <i>CN</i> : <i>AN</i>.

Верно ли, что при любом <i>n</i> правильный 2<i>n</i>-угольник является проекцией некоторого многогранника, имеющего не более, чем  <i>n</i> + 2  грани?

Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.

Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. (<i> Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника</i>.)

Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.

Докажите, что если при аффинном (не тождественном) преобразовании <i>L</i>каждая точка некоторой прямой <i>l</i>переходит в себя, то все прямые вида<i>ML</i>(<i>M</i>), где в качестве <i>M</i>берутся произвольные точки, не лежащие на прямой <i>l</i>, параллельны друг другу.

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку <i>O</i>в данную точку <i>O'</i>, а данный базис векторов <b>e</b><sub>1</sub>,<b>e</b><sub>2</sub> — в данный базис <b>e</b><sub>1</sub>',<b>e</b><sub>2</sub>'. б) Даны два треугольника<i>ABC</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что существует единственное аффинное преобразование, переводящее точку <i>A</i>в <i>A</i><sub>1</sub>,<i>B</i> — в <i>B</i><sub>1</sub>,<i&...

Пусть <i>A'</i>,<i>B'</i>,<i>C'</i> — образы точек <i>A</i>,<i>B</i>,<i>C</i>при аффинном преобразовании <i>L</i>. Докажите, что если <i>C</i>делит отрезок<i>AB</i>в отношении<i>AC</i>:<i>CB</i>=<i>p</i>:<i>q</i>, то <i>C'</i>делит отрезок<i>A'B'</i>в том же отношении.

Докажите, что если <i>L</i> — аффинное преобразование, то а)<i>L</i>($\overrightarrow{0}$) =$\overrightarrow{0}$; б)<i>L</i>(<b>a</b>+<b>b</b>) =<i>L</i>(<b>a</b>) +<i>L</i>(<b>b</b>); в)<i>L</i>(<i>k</i><b>a</b>) =<i>kL</i>(<b>a</b>).

Пусть <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>,<i>D</i><sub>1</sub> — образы точек <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>при аффинном преобразовании. Докажите, что если$\overrightarrow{AB}$=$\overrightarrow{CD}$, то$\overrightarrow{A_1B_1}$=$\overrightarrow{C_1D_1}$.

Докажите, что при аффинном преобразовании параллельные прямые переходят в параллельные.

Докажите, что растяжение плоскости является аффинным преобразованием.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка