Олимпиадные задачи по теме «Теория чисел. Делимость» - сложность 3 с решениями

Существуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?

Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?

Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством:  7<i>p</i> + 1  делится на <i>q</i>, а  7<i>q</i> + 1  делится на <i>p</i>.

Тридцать три богатыря нанялись охранять Лукоморье за 240 монет. Хитрый дядька Черномор может разделить богатырей на отряды произвольной численности (или записать всех в один отряд), а затем распределить всё жалованье между отрядами. Каждый отряд делит свои монеты поровну, а остаток отдаёт Черномору. Какое наибольшее количество монет может достаться Черномору, если:

  а) жалованье между отрядами Черномор распределяет как ему угодно;

  б) жалованье между отрядами Черномор распределяет поровну?

Найдите все такие натуральные <i>k</i>, что при каждом нечётном  <i>n</i> > 100  число  20<sup><i>n</i></sup> + 13<sup><i>n</i></sup>  делится на <i>k</i>.

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?

В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.

Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.

  а) Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

  б) А если при этом дополнительно требуется, чтобы  <i>C</i>(<i>a + b</i>) > 1000?

Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?

Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?

Пусть  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub>  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub>  равняться 2012?

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа  <i>a</i>² – 2011<i>b</i>²  и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

Докажите, что для любого натурального <i>n</i> существуют такие целые числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>,  что при всех целых <i>x</i> число

(...((<i>x</i>² + <i>a</i><sub>1</sub>)² + <i>a</i><sub>2</sub>)² + ... + <i>a</i><sub><i>n</i>–1</sub>)² + <i>a<sub>n</sub></i>   делится на  2<i>n</i> – 1.

Пусть <i>p</i> – простое число. Набор из  <i>p</i> + 2  натуральных чисел (не обязательно различных) назовём <i>интересным</i>, если сумма любых <i>p</i> из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.

У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?

Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа  <i>x + y</i>² + <i>z</i>²,  <i>x</i>² + <i>y</i> + <i>z</i>²  и  <i>x</i>² + <i>y</i>² + <i>z</i>  целые. Докажите, что число 2<i>x</i> целое.

Для натурального <i>a</i> обозначим через <i>P</i>(<i>a</i>) наибольший простой делитель числа  <i>a</i>² + 1.

Докажите, что существует бесконечно много таких троек различных натуральных чисел <i>a, b, c</i>, что  <i>P</i>(<i>a</i>) = <i>P</i>(<i>b</i>) = <i>P</i>(<i>c</i>).

Для натуральных чисел  <i>a</i> > <i>b</i> > 1  определим последовательность  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ...  формулой   <img align="absmiddle" src="/storage/problem-media/116644/problem_116644_img_2.gif"> .   Найдите наименьшее <i>d</i>, при котором ни при каких <i>a</i> и <i>b</i> эта последовательность не содержит <i>d</i> последовательных членов, являющихся простыми числами.

Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?

Даны различные натуральные числа <i>a</i>, <i>b</i>. На координатной плоскости нарисованы графики функций  <i>y</i> = sin <i>ax</i>,  <i>y</i> = sin <i>bx</i>  и отмечены все точки их пересечения. Докажите, что существует натуральное число <i>c</i>, отличное от <i>a</i>, <i>b</i> и такое, что график функции  <i>y</i> = sin <i>cx</i>  проходит через все отмеченные точки.

Главная аудитория фирмы "Рога и копыта" представляет собой квадратный зал из восьми рядов по восемь мест. 64 сотрудника фирмы писали в этой аудитории тест, в котором было шесть вопросов с двумя вариантами ответа на каждый. Могло ли так оказаться, что среди наборов ответов сотрудников нет одинаковых, причем наборы ответов любых двух людей за соседними столами совпали не больше, чем в одном вопросе? (Столы называются соседними, если они стоят рядом в одном ряду или друг за другом в соседних рядах.)

На окружности отмечено 2<i>N</i> точек (<i>N</i> – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем <i>паросочетанием</i> такой набор из <i>N</i> хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание <i>чётным</i>, если количество точек, в которых пересекаются его хорды, чётно, и <i>нечётным</i> иначе. Найдите разность между количеством чётных и нечётных паросочетаний.

Дан квадрат <i>n</i>×<i>n</i>. Изначально его клетки раскрашены в белый и чёрный цвета в шахматном порядке, причём хотя бы одна из угловых клеток чёрная. За один ход разрешается в некотором квадрате 2×2 одновременно перекрасить входящие в него четыре клетки по следующему правилу: каждую белую перекрасить в чёрный цвет, каждую чёрную – в зелёный, а каждую зелёную – в белый. При каких <i>n</i> за несколько ходов можно получить шахматную раскраску, в которой чёрный и белый цвета поменялись местами?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка