Олимпиадные задачи по теме «Корни. Степень с рациональным показателем» для 8 класса - сложность 1-2 с решениями

Решите уравнение:  <img align="absmiddle" src="/storage/problem-media/116794/problem_116794_img_2.gif"> .

Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?

Доказать, что выражение <center><i>

<img src="/storage/problem-media/108970/problem_108970_img_2.gif">+<img src="/storage/problem-media/108970/problem_108970_img_3.gif">

</i></center> равно 2, если<i> 1<= a <= 2 </i>, и равно<i> 2<img src="/storage/problem-media/108970/problem_108970_img_4.gif"> </i>, если<i> a>2 </i>.

Сравните без помощи калькулятора числа:  <img align="absmiddle" src="/storage/problem-media/104092/problem_104092_img_2.jpg">.

Коэффициенты квадратного уравнения  <i>x</i>² + <i>px + q</i> = 0  изменили не больше чем на 0,001.

Может ли больший корень уравнения измениться больше, чем на 1000?

Найдите все значения <i>а</i>, для которых выражения   <i>а</i> + <img align="absmiddle" src="/storage/problem-media/86505/problem_86505_img_2.gif">   и   <sup>1</sup>/<sub><i>а</i></sub> – <img align="absmiddle" src="/storage/problem-media/86505/problem_86505_img_2.gif">   принимают целые значения.

Решите уравнение<div align="CENTER"> (<i>x</i><sup>2</sup> + <i>x</i>)<sup>2</sup> + $\displaystyle \sqrt{x^2-1}$ = 0. </div>

Найти все значения <i>x, y</i> и <i>z</i>, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.

Известно, что   <img align="absmiddle" src="/storage/problem-media/66357/problem_66357_img_2.gif">   где  <i>x</i> > 0,  <i>y</i> > 0,  <i>z</i> > 0.  Докажите, что   <img align="absmiddle" src="/storage/problem-media/66357/problem_66357_img_3.gif">

Что больше:   <img align="absmiddle" src="/storage/problem-media/65908/problem_65908_img_2.gif">   или   <img align="absmiddle" src="/storage/problem-media/65908/problem_65908_img_3.gif">

Известно, что  <i>а</i> > 1.  Обязательно ли имеет место равенство  <img align="absmiddle" src="/storage/problem-media/65593/problem_65593_img_2.gif"> = <img align="middle" src="/storage/problem-media/65593/problem_65593_img_3.gif">?

Упростите выражение (избавьтесь от как можно большего количества знаков корней):   <img align="absmiddle" src="/storage/problem-media/64993/problem_64993_img_2.gif"> .

Существует ли такое <i>x</i>, что   <img align="absmiddle" src="/storage/problem-media/64834/problem_64834_img_2.gif"> ?

Решите уравнение$\sqrt{a+\sqrt{a+\sqrt{a+x}}}$=<i>x</i>.

При каких натуральных <i>n</i> число  (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> + 1)<sup><i>n</i></sup> – (<img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/60871/problem_60871_img_2.gif"> – 1)<sup><i>n</i></sup>  будет целым?

<b>Формула сложного радикала.</b>Докажите равенство:<div align="CENTER"> $\displaystyle \sqrt{a\pm\sqrt{b}}$ = $\displaystyle \sqrt{\frac{a+\sqrt{a^2-b}}{2}}$±$\displaystyle \sqrt{\frac{a-\sqrt{a^2-b}}{2}}$. </div>

<b>Задача Бхаскары.</b>Упростите выражение<div align="CENTER"> $\displaystyle \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}$. </div>

Найдите первые 17 знаков в десятичной записи у чисел: а)${\dfrac{1}{\sqrt1+\sqrt2}}$+${\dfrac{1}{\sqrt2+\sqrt3}}$+...+${\dfrac{1}{\sqrt{99}+\sqrt{100}}}$; б)${\dfrac{\sqrt2+\sqrt{3/2}}{\sqrt2+\sqrt{2+\sqrt3}}}$+${\dfrac{\sqrt2-\sqrt{3/2}}{\sqrt2-\sqrt{2-\sqrt3}}}$; в)$\sqrt{\vert 40\sqrt2-57\vert}$-$\sqrt{40\sqrt2+57}$.

Пусть<i>a</i>,<i>b</i>,<i>c</i> — различные простые числа. Докажите, что числа$\sqrt{a}$,$\sqrt{b}$,$\sqrt{c}$не могут быть членами одной арифметической прогрессии.

Докажите неравенство для натуральных <i>n</i>:   <img align="MIDDLE" src="/storage/problem-media/60302/problem_60302_img_2.gif">

Докажите, что сумма$\frac {1}{\sqrt {1} + \sqrt {2}} + \frac {1}{\sqrt {2} + \sqrt {3}} + \dots + \frac {1}{\sqrt {99} + \sqrt {100}}$является целым числом.

Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?

<i>n</i> – натуральное число. Докажите, что   <img width="318" height="52" align="MIDDLE" border="0" src="/storage/problem-media/30897/problem_30897_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка