Олимпиадные задачи по теме «Корни. Степень с рациональным показателем» для 11 класса - сложность 2 с решениями
Корни. Степень с рациональным показателем
НазадИзобразите на координатной плоскости множество всех точек, координаты <i>x</i> и <i>у</i> которых удовлетворяют неравенству <img align="absmiddle" src="/storage/problem-media/116892/problem_116892_img_2.gif"> .
Решите уравнение: <img align="absmiddle" src="/storage/problem-media/116615/problem_116615_img_2.gif">.
Решите систему уравнений (<i>n</i> > 2) <img align="middle" src="/storage/problem-media/111649/problem_111649_img_2.gif"> <img align="middle" src="/storage/problem-media/111649/problem_111649_img_3.gif"> <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub> = 1.
Коэффициенты квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$.
Решите уравнение <img align="absmiddle" src="/storage/problem-media/66348/problem_66348_img_2.gif">
Решите уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = <i>f</i>(<i>x</i>), если <img align="absmiddle" src="/storage/problem-media/66009/problem_66009_img_2.gif">
Решите уравнение <img align="absmiddle" src="/storage/problem-media/65994/problem_65994_img_2.gif">
Существует ли такое натуральное число <i>n</i>, большее 1, что значение выражения <img align="absmiddle" src="/storage/problem-media/65522/problem_65522_img_2.gif"> является натуральным числом?
Найдите наименьшее значение дроби <sup><i>x</i></sup>/<sub><i>y</i></sub>, если <img align="absmiddle" src="/storage/problem-media/64900/problem_64900_img_2.gif">.
Числа <i>x, y, z</i> и <i>t</i> лежат в интервале (0, 1). Докажите неравенство <img align="absmiddle" src="/storage/problem-media/64488/problem_64488_img_2.gif"> < 4.
Найдите у чисел а) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_2.gif">)<sup>1999</sup>; б) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>1999</sup>; в) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>2000</sup> первые 1000 знаков после запятой.
Докажите, что для любого числа<i>p</i>> 2 найдется такое число$\beta$, что<div align="CENTER"> $\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+ \sqrt{2+p}}}}}{n~\mbox{\scriptsize {радикалов}}}^{},$ = $\displaystyle \beta^{2^n}{}$ - $\displaystyle \beta^{-2^n}_{}$. </div>
Докажите, что уравнение (<i>x + y</i><img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif">)<sup>4</sup> + (<i>z + t</i><img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif">)<sup>4</sup> = 2 + <img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif"> не имеет решений в рациональных числах.
Решите уравнение$\sqrt{a+\sqrt{a+\sqrt{a+x}}}$=<i>x</i>.
Существуют ли такие иррациональные числа a и b, что степень a<sup>b</sup>- число рациональное?