Олимпиадные задачи по математике для 8-10 класса

Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?

Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8. <div align="center"><img src="/storage/problem-media/116057/problem_116057_img_2.gif"></div>

Сторону <i>AB</i> треугольника <i>ABC</i> разделили на <i>n</i> равных частей (точки деления  <i>B</i><sub>0</sub> = <i>A,  B</i><sub>1</sub>, <i>B</i><sub>2</sub>,  <i>B<sub>n</sub> = B</i>),  а сторону <i>AC</i> этого треугольника разделили на

<i>n</i> + 1  равных частей (точки деления  <i>C</i><sub>0</sub> = <i>A,  C</i><sub>1</sub>, <i>C</i><sub>2</sub>, ..., <i>C</i><sub><i>n</i>+1</sub> = <i>C</i>).  Закрасили треугольники <i>C<sub>i</sub>B<sub>i</sub>C</i><sub><i&gt...

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР — трёхзначные числа, разные буквы обозначают различные цифры.)

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя. <div align="center"><img align="absmiddle" src="/storage/problem-media/111899/problem_111899_img_2.gif"> </div>

<center><i> <img src="/storage/problem-media/111320/problem_111320_img_2.gif"> </i></center> Автостоянка в Цветочном городе представляет собой квадрат7<i>x </i>7клеточек, в каждой из которых можно поставить машину. Стоянка обнесена забором, одна из сторон угловой клетки удалена (это ворота). Машина ездит по дорожке шириной в клетку. Незнайку попросили разместить как можно больше машин на стоянке таким образом, чтобы любая могла выехать, когда прочие стоят. Незнайка расставил 24 машины так, как показано на рис.. Попытайтесь расставить машины по-другому, чтобы их поместилось больше.

На основании <i>AD</i> и боковой стороне <i>AB</i> равнобедренной трапеции <i>ABCD</i> взяты точки <i>E, F</i> соответственно так, что <i>CDEF</i> – также равнобедренная трапеция. Докажите, что  <i>AE·ED = AF·FB</i>.

Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?

Есть шоколадка в форме равностороннего треугольника со стороной <i>n</i>, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого <i>n</i> выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

Придумайте десятизначное число, в записи которого нет нулей, такое что при прибавлении к нему произведения его цифр получается число с таким же произведением цифр.

Докажите, что на графике функции  <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции  <i>y = x</i>³ + |<i>x</i>| + 1  – такую точку <i>B</i>, что расстояние <i>AB</i> не превышает <sup>1</sup>/<sub>100</sub>.

На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.) <div align="center"><img src="/storage/problem-media/105096/problem_105096_img_2.png"></div>

Сложите из фигур, изображённых на рисунке, квадрат размером 9×9 с вырезанным в его центре квадратом 3×3. (Фигуры можно не только поворачивать, но и переворачивать.)

<img src="/storage/problem-media/103902/problem_103902_img_2.gif">

Сложите из фигур, изображённых на рисунке, а) квадрат размером 9×9 с вырезанным в его центре квадратом 3×3; б) прямоугольник размером 9×12. (Фигуры можно не только поворачивать, но и переворачивать.)

<img src="/storage/problem-media/103896/problem_103896_img_2.gif">

Решите ребус:  БАО×БА×Б = 2002.

Верно ли, что на графике функции  <i>y = x</i>³  можно отметить такую точку <i>A</i>, а на графике функции  <i>y = x</i>³ + |<i>x</i>| + 1  – такую точку <i>B</i>, что расстояние <i>AB</i> не превысит <sup>1</sup>/<sub>100</sub>?

На сторонах треугольника <i>ABC</i> вовне построены квадраты <i>ABB</i><sub>1</sub><i>A</i><sub>2</sub>, <i>BCC</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CAA</i><sub>1</sub><i>C</i><sub>2</sub>. На отрезках <i>A</i><sub>1</sub><i>A</i><sub>2</sub> и <i>B</i><sub>1</sub><i>B</i><sub>2</sub> также во внешнюю сторону от треугольников <i>AA</i><sub>1</sub><i>A</i><sub>2</sub> и <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> построены квадраты <i>A</...

На прозрачном листе бумаги отмечены три точки.

Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.

Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. <div align="center"><img src="/storage/problem-media/66141/problem_66141_img_2.gif"></div>

Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.

Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.

Мог ли результат оказаться квадратом натурального числа?

Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.

(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

Мама испекла пирожки – три с рисом, три с капустой и один с вишней – и выложила их на блюдо по кругу (см. рис.). Потом поставила блюдо в микроволновку подогреть. На вид все пирожки одинаковые. Маша знает, как они лежали, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Маше наверняка добиться этого, надкусив как можно меньше невкусных пирожков?<div align="center"><img src="/storage/problem-media/64573/problem_64573_img_2.gif"></div>

На доске записано целое положительное число <i>N</i>. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких <i>N</i> первый игрок может выиграть, как бы ни играл соперник?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка