Олимпиадные задачи по математике - сложность 3 с решениями

В параллелограмме <i>ABCD</i> опустили перпендикуляр <i>BH</i> на сторону <i>AD</i>. На отрезке <i>BH</i> отметили точку <i>M</i>, равноудалённую от точек <i>C</i> и <i>D</i>. Пусть точка <i>K</i> – середина стороны <i>AB</i>. Докажите, что угол <i>MKD</i> прямой.

Дан произвольный треугольник <i>ABC</i>. Постройте прямую, проходящую через вершину <i>B</i> и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.

Докажите, что суммы площадей её противоположных боковых граней равны.

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

Дан равнобедренный треугольник <i>ABC</i> с основанием <i>AC</i>. <i>H</i> – точка пересечения высот. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>M</i> и <i>K</i> и соответственно так, что ∠<i>KMH</i> = 90°. Докажите, что из отрезков <i>AK</i>, <i>CM</i> и <i>MK</i> можно сложить прямоугольный треугольник.

Даны две пересекающиеся окружности с центрами <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой <i>O</i><sub>1</sub><i>O</i><sub>2</sub> на наибольшее расстояние.

В треугольнике <i>ABC</i> проведены биссектрисы <i>AA', BB'</i> и <i>CC'</i>. Пусть <i>P</i> – точка пересечения <i>A'B'</i> и <i>CC'</i>, а <i>Q</i> – точка пересечения <i>A'C'</i> и <i>BB'</i>.

Докажите, что  ∠<i>PAC</i> = ∠<i>QAB</i>.

В треугольник <i>ABC</i> с прямым углом <i>C</i> вписана окружность, касающаяся сторон <i>AC, BC</i> и <i>AB</i> в точках <i>M, K</i> и <i>N</i> соответственно. Через точку <i>K</i> провели прямую, перпендикулярную отрезку <i>MN</i>. Она пересекла катет <i>AC</i> в точке <i>X</i>. Докажите, что  <i>CK = AX</i>.

Точка<i> O </i>лежит внутри ромба<i> ABCD </i>. Угол<i> DAB </i>равен110<i><sup>o</sup> </i>. Углы<i> AOD </i>и<i> BOC </i>равны80<i><sup>o</sup> </i>и100<i><sup>o</sup> </i>соответственно. Чему может быть равен угол<i> AOB </i>?

На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой.

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.

Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.

Максим сложил на столе из 9 квадратов и 19 равносторонних треугольников (не накладывая их друг на друга) многоугольник. Мог ли периметр этого многоугольника оказаться равным 15 см, если стороны всех квадратов и треугольников равны 1 см?

На биссектрисе <i>AA</i><sub>1</sub> треугольника <i>ABC</i> выбрана точка <i>X</i>. Прямая <i>BX</i> пересекает сторону <i>AC</i> в точке <i>B</i><sub>1</sub>, а прямая <i>CX</i> пересекает сторону <i>AB</i> в точке <i>C</i><sub>1</sub>. Отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>CC</i><sub>1</sub> пересекаются в точке <i>P</i>, а отрезки <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>BB</i><sub>1</sub> пересекаются в точке <i>Q</i>. Докажите, что углы <i>PAC</i&g...

В четырёхугольнике <i>ABCD  AB = CD,  M</i> и <i>K</i> – середины <i>BC</i> и <i>AD</i>. Докажите, что угол между <i>MK</i> и <i>AC</i> равен полусумме углов <i>BAC</i> и <i>DCA</i>.

В трапеции <i>ABCD</i> диагонали пересекаются в точке <i>O</i>. На боковой стороне <i>CD</i> выбрана точка <i>M</i>, а на основаниях <i>BC</i> и <i>AD</i> – точки <i>P</i> и <i>Q</i> так, что отрезки <i>MP</i> и <i>MQ</i> параллельны диагоналям трапеции. Докажите, что прямая <i>PQ</i> проходит через точку <i>O</i>.

В выпуклом четырёхугольнике <i>ABCD</i>  <i>O</i> – точка пересечения диагоналей, а <i>M</i> – середина стороны <i>BC</i>. Прямые <i>MO</i> и <i>AD</i> пересекаются в точке <i>E</i>. Докажите, что  <i>AE</i> : <i>ED = S<sub>ABO</sub> : S<sub>CDO</sub></i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка