Олимпиадные задачи по математике для 9 класса - сложность 1-2 с решениями

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AA</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Описанная окружность Ω треугольника <i>ABC</i> пересекает прямую <i>A</i><sub>1</sub><i>C</i><sub>1</sub> в точках <i>A'</i> и <i>C'</i>. Касательные к Ω, проведённые в точках <i>A'</i> и <i>C'</i>, пересекаются в точке <i>B'</i>. Докажите, что прямая <i>BB'</i> проходит через центр окружности Ω.

Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

Окружности ω<sub>1</sub> и ω<sub>2</sub> касаются внешним образом в точке <i>P</i>. Через центр ω<sub>1</sub> проведена прямая <i>l</i><sub>1</sub>, касающаяся ω<sub>2</sub>. Аналогично прямая <i>l</i><sub>2</sub> касается ω<sub>1</sub> и проходит через центр ω<sub>2</sub>. Оказалось, что прямые <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub> непараллельны. Докажите, что точка <i>P</i> лежит на биссектрисе одного из углов, образованных <i>l</i><sub>1</sub> и <i>l</i><sub>2</sub>.

В неравнобедренном остроугольном треугольнике <i>ABC</i> точки <i>C</i><sub>0</sub> и <i>B</i><sub>0</sub> – середины сторон <i>AB</i> и <i>AC</i> соответственно, <i>O</i> – центр описанной окружности, <i>H</i> – точка пересечения высот. Прямые <i>BH</i> и <i>OC</i><sub>0</sub> пересекаются в точке <i>P</i>, а прямые <i>CH</i> и <i>OB</i><sub>0</sub> – в точке <i>Q</i>. Оказалось, что четырёхугольник <i>OPHQ</i> – ромб. Докажите, что точки <i>A, P</i> и <i>Q</i> лежат на одной прямой.

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

При изготовлении партии из  <i>N</i> ≥ 5  монет работник по ошибке изготовил две монеты из другого материала (все монеты выглядят одинаково). Начальник знает, что таких монет ровно две, что они весят одинаково, но отличаются по весу от остальных. Работник знает, какие это монеты и что они легче остальных. Ему нужно, проведя два взвешивания на чашечных весах без гирь, убедить начальника в том, что фальшивые монеты легче настоящих, и в том, какие именно монеты фальшивые. Может ли он это сделать?

По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось <i>OX</i> никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось <i>OY</i> обязательно совпадут или совпадали раньше.

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

Найти все равнобедренные треугольники, которые нельзя разрезать на три равнобедренных треугольника с одинаковыми боковыми сторонами.

В остроугольном треугольнике $ABC$ $H$ – ортоцентр; $A_1$, $B_1$, $C_1$ – точки касания вписанной окружности с $BC$, $CA$, $AB$ соответственно; $E_A$, $E_B$, $E_C$ – середины $AH$, $BH$, $CH$ соответственно; окружность с центром $E_A$, проходящая через $A$, повторно пересекает биссектрису угла $A$ в точке $A_2$; точки $B_2$, $C_2$ определены аналогично. Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.

В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$.

Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.

Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$. а) Какое наибольшее число различных может быть среди них?

б) Найдите все возможные количества различных длин.

В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?

Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.

На клетчатой бумаге отметьте три узла так, чтобы в образованном ими треугольнике сумма двух меньших медиан равнялась полупериметру.

Докажите, что сумма длин любых двух медиан произвольного треугольника

  а) не больше ¾ <i>P</i>, где <i>P</i> – периметр этого треугольника;

  б) не меньше ¾ <i>p</i>, где <i>p</i> – полупериметр этого треугольника.

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.

В четырёхугольнике <i>ABCD</i> стороны <i>AD</i> и <i>BC</i> параллельны.

Докажите, что если биссектрисы углов <i>DAC, DBC, ACB</i> и <i>ADB</i> образовали ромб, то  <i>AB = CD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка