Олимпиадные задачи из источника «Заочный тур» - сложность 2 с решениями

Согласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке? <div align="center"><img src="/storage/problem-media/66057/problem_66057_img_2.gif"></div>

Имеется <i>n</i> случайных векторов вида  (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>),  где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор <i><b>a</b></i> с координатами  (<i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>, <i>Y</i><sub>3</sub>).

  а) Найдите математическое ожидание случайной величины <i><b>a</b></i>².

  б) Докажите, что  <img align="absmiddle" src="/storage/problem-media/66053/problem_66053_img_2.gif">

  По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему). <div align="center"><img src="/storage/problem-media/66051/problem_66051_img_2.gif"></div>  Войдя на станцию, Учёный садится в первый же подошедший поезд. Известно, что в обоих направлениях поезда ходят с примерно равными интервалами, причём по северному маршруту (через "Белорусскую") поезд идёт от "Киевской" до "Таганской" или обратно 17 минут, а по южному маршруту (через "Павелецкую") – 11 минут.   По давней привычке Учёный всё всегда подсчитывает. Однажды он подсчитал, что по многолетним наблюдениям:   - поезд, идущий против часо...

На бал пришли <i>n</i> семейных пар. В каждой паре муж и жена абсолютно одинакового роста, но двух пар одного роста нет. Начинает звучать вальс, и все пришедшие разбиваются случайным образом на пары: каждый кавалер танцует со случайно выбранной дамой. Найдите математическое ожидание случайной величины <i>X</i>  "Число кавалеров, которые ниже своей партнёрши".

В турнире участвуют 100 борцов, все разной силы. В любом поединке двух борцов всегда побеждает тот, кто сильнее. В первом туре борцы разбились на случайные пары и провели поединки. Для второго тура борцы ещё раз разбиваются на случайные пары соперников (может случиться, что какие-то пары повторятся). Приз получает тот, кто выиграет оба поединка. Найдите:   а) наименьшее возможное число призёров турнира;   б) математическое ожидание числа призеров турнира.

На антарктической станции <i>n</i> полярников, все разного возраста. С вероятностью <i>p</i> между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.

На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?

  В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.

  После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из все...

В Солнечной долине 10 посёлков. Однажды статистики долины провели исследование численности жителей в посёлках. Обнаружили следующее.

  1. Число жителей в любых двух посёлках долины отличается не более чем на 100 человек.

  2. В посёлке Знойное ровно 1000 жителей, что превышает среднюю численность населения посёлков долины на 90 человек.

Сколько жителей в посёлке Радужный, который также расположен в Солнечной долине?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка