Олимпиадные задачи из источника «Всероссийская олимпиада по математике» для 8 класса - сложность 5 с решениями

В нашем распоряжении имеются 3<sup>2<i>k</i></sup>неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3<i>k + </i>1 взвешиваний?

На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.

Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.

Докажите, что выпуклый многоугольник может быть разрезан непересекающимися диагоналями на остроугольные треугольники не более, чем одним способом.

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

Окружность<i> σ </i>касается равных сторон<i> AB </i>и<i> AC </i>равнобедренного треугольника<i> ABC </i>и пересекает сторону<i> BC </i>в точках<i> K </i>и<i> L </i>. Отрезок<i> AK </i>пересекает<i> σ </i>второй раз в точке<i> M </i>. Точки<i> P </i>и<i> Q </i>симметричны точке<i> K </i>относительно точек<i> B </i>и<i> C </i>соответственно. Докажите, что описанная окружность треугольника<i> PMQ </i>касается окружности<i> σ </i>.

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.

Точки<i> A</i>2,<i> B</i>2и<i> C</i>2– середины высот<i> AA</i>1,<i> BB</i>1и<i> CC</i>1остроугольного треугольника<i> ABC </i>. Найдите сумму углов<i> B</i>2<i>A</i>1<i>C</i>2,<i> C</i>2<i>B</i>1<i>A</i>2и<i> A</i>2<i>C</i>1<i>B</i>2.

Окружность, вписанная в четырёхугольник<i> ABCD </i>, касается его сторон<i> DA </i>,<i> AB </i>,<i> BC </i>и<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>и<i> N </i>соответственно. Пусть<i> S</i>1,<i> S</i>2,<i> S</i>3и<i> S</i>4– окружности, вписанные в треугольники<i> AKL </i>,<i> BLM </i>,<i> CMN </i>и<i> DNK </i>соответственно. К окружностям<i> S</i>1и<i> S</i>2,<i> S</i>2и<i> S</i>3,<i> S</i>3и<i> S</i>4,<i> S</i>4и<i> S</i>1проведены общие касательные, отличные от сторон четырёхугол...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка