Олимпиадные задачи из источника «1992-1993» для 1-7 класса

На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой <i>l</i> так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная <i>l</i>, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой <i>l</i> так, чтобы другие их катеты лежали на прямой <i>l</i>, то также найдётся прямая, параллельная <i> l </i>, пересекающая их по равным отрезкам.

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). <center> <img src="/storage/problem-media/109542/problem_109542_img_2.gif"> </center>На клетке, помеченной звездочкой, стоит<i>кентавр</i>– фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

Целые числа <i>x, y</i> и <i>z</i> таковы, что  (<i>x – y</i>)(<i>y – z</i>)(<i>z – x</i>) = <i>x + y + z</i>.  Докажите, что число  <i>x + y + z</i>  делится на 27.

Отрезки<i> AB </i>и<i> CD </i>длины 1 пересекаются в точке<i> O </i>, причем<i> <img src="/storage/problem-media/109522/problem_109522_img_2.gif"> AOC=</i>60<i><sup>o</sup> </i>. Докажите, что<i> AC+BD<img src="/storage/problem-media/109522/problem_109522_img_3.gif"></i>1.

Натуральное число <i>n</i> таково, что числа  2<i>n</i> + 1  и  3<i>n</i> + 1  являются квадратами. Может ли при этом число  5<i>n</i> + 3  быть простым?

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка