Олимпиадные задачи из источника «28 турнир (2006/2007 год)» для 11 класса
28 турнир (2006/2007 год)
НазадСтороны треугольника <i>ABC</i> видны из точки <i>T</i> под углами 120°. Докажите, что прямые, симметричные прямым <i>AT, BT</i> и <i>CT</i> относительно прямых <i>BC, CA</i> и <i>AB</i> соответственно, пересекаются в одной точке.
На параболе <i>y = x</i>² выбраны четыре точки <i>A, B, C, D</i> так, что прямые <i>AB</i> и <i>CD</i> пересекаются на оси ординат.
Найдите абсциссу точки <i>D</i>, если абсциссы точек <i>A, B</i> и <i>C</i> равны <i>a, b</i> и <i>c</i> соответственно.
Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
а) делится на 12!;
б) делится на 13!.
Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?
В числе <i>a</i> = 0,12457... <i>n</i>-я цифра после запятой равна цифре слева от запятой в числе <img align="absmiddle" src="/storage/problem-media/109196/problem_109196_img_2.gif"> Докажите, что α – иррациональное число.
Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)
Дано иррациональное число α, 0 < α < ½. По нему определяется новое число α<sub>1</sub> как меньшее из двух чисел 2α и 1 – 2α. По этому числу аналогично определяется α<sub>2</sub>, и так далее.
а) Докажите, что α<sub><i>n</i></sub> < <sup>3</sup>/<sub>16</sub> для некоторого <i>n</i> .
б) Может ли случиться, что α<sub><i>n</i></sub> > <sup>7</sup>/<sub>40</sub> при всех натуральных <i>n</i>?
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
Пусть <i>f</i>(<i>x</i>) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение <i>f</i>(<i>x</i>) = <i>a</i> при любом значении <i>a</i> имеет чётное число решений?
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
а) каждая карта наверняка оказалась не там, где была вначале?
б) рядом со свободным местом наверняка не было туза пик?
а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку? б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°. (Торт и коробку считайте плоскими фигурами.)
Последовательность нулей и единиц строится следующим образом: на <i>k</i>-м месте ставится ноль, если сумма цифр числа <i>k</i> чётна, и единица, если сумма цифр числа <i>k</i> нечётна. Докажите, что эта последовательность непериодична.
Прямая касается окружности в точке <i>A</i>. На прямой выбрали точку <i>B</i> и повернули отрезок <i>AB</i> на некоторый угол вокруг центра окружности, получив отрезок <i>A'B'</i>. Докажите, что прямая, проходящая через точки касания <i>A</i> и <i>A'</i>, делит пополам отрезок <i>BB'</i>.
Многочлен <i>x</i>³ + <i>px</i>² + <i>qx + r</i> имеет на интервале (0, 2) три корня. Докажите, что – 2 < <i>p + q + r</i> < 0.
Клетки доски 9×9 раскрасили в шахматном порядке в чёрный и белый цвета (угловые клетки белые). Какое наименьшее число ладей нужно поставить на эту доску, чтобы все белые клетки оказались под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?