Олимпиадные задачи из источника «24 турнир (2002/2003 год)» для 10 класса - сложность 2 с решениями

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

Дана треугольная пирамида <i>ABCD</i>. В ней <i>R</i> – радиус описанной сферы, <i>r</i> – радиус вписанной сферы, <i>a</i> – длина наибольшего ребра, <i>h</i> – длина наименьшей высоты (на какую-то грань). Докажите, что  <sup><i>R</i></sup>/<i><sub>r</sub> > <sup>a</sup></i>/<sub><i>h</i></sub>.

В треугольнике <i>ABC</i> взяли точку <i>M</i> так, что что радиусы описанных окружностей треугольников <i>AMC, BMC</i> и <i>BMA</i> не меньше радиуса описанной окружности треугольника <i>ABC</i>. Докажите, что все четыре радиуса равны.

Имеется 100 палочек, из которых можно сложить 100-угольник.

Может ли случиться, что ни из какого меньшего числа этих палочек нельзя сложить многоугольник?

2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)

Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?

Пусть <i>x, y, z</i> – любые числа из интервала  (0, <sup>π</sup>/<sub>2</sub>).  Докажите неравенство   <img align="absmiddle" src="/storage/problem-media/98588/problem_98588_img_2.gif">

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка