Олимпиадные задачи из источника «19 турнир (1997/1998 год)» - сложность 3 с решениями

a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту. б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

Назовём <i>лабиринтом</i> шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется <i>хорошим</i>, иначе – <i>плохим</i>. Каких лабиринтов больше – хороших или плохих?

Внутренняя точка <i>M</i> выпуклого четырёхугольника <i>ABCD</i> такова, что треугольники <i>AMB</i> и <i>CMD</i> – равнобедренные с углом величиной 120° при вершине <i>M</i>.

Докажите существование такой точки <i>N</i>, что треугольники <i>BNC</i> и <i>DNA</i> – правильные.

а) На доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После семи таких операций на доске будет только одно число. Может ли оно равняться 97?

б) На доске выписаны числа 1, 2<sup>1</sup>, 2², 2³, ..., 2<sup>10</sup>. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После нескольких таких операций на доске будет только одно число. Чему оно может быть равно?

Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений

    <i>x</i>² + <i>y</i>² = <i>A</i>,

    |<i>x| + |y| = B</i>

имеет <i>m</i> решений, а система уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,

    |<i>x| + |y| + |z| = D</i>

имеет <i>n</i> решений. Известно, что  <i>m > n</i> > 1.  Найдите <i>m</i> и <i>n</i>.

Квадрат разбит прямыми на 25 квадратиков-клеток. В некоторых клетках нарисована одна из диагоналей так, что никакие две диагонали не имеют общей точки (даже общего конца). Каково наибольшее возможное число нарисованных диагоналей?

<i>CM</i> и <i>BN</i> – медианы треугольника <i>ABC, P</i> и <i>Q</i> – такие точки соответственно на <i>AB</i> и <i>AC</i>, что биссектриса угла <i>C</i> треугольника одновременно является биссектрисой угла <i>MCP</i>, а биссектриса угла <i>B</i> – биссектрисой угла <i>NBQ</i>. Оказалось, что  <i>AP = AQ</i>.  Следует ли из этого, что треугольник <i>ABC</i> равнобедренный?

Перемножаются все выражения вида   <img align="absmiddle" src="/storage/problem-media/98373/problem_98373_img_2.gif">   (при всевозможных комбинациях знаков).

Докажите, что результат   а) целое число,   б) квадрат целого числа.

Верны ли утверждения:

  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.

  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.

  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

Каждая сторона правильного треугольника разбита на 10 равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на 100 маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску. Какое максимальное число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений?

Раскрашенный в чёрный и белый цвета кубик с гранью в одну клетку поставили на одну из клеток шахматной доски и прокатили по ней так, что кубик побывал на каждой клетке ровно по одному разу. Можно ли так раскрасить кубик и так прокатить его по доске, чтобы каждый раз цвета клетки и соприкоснувшейся с ней грани совпадали?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка